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Abstract— HeartLander is a small mobile robot which 

adheres to and navigates over the surface of the heart to 

provide therapies in a minimally invasive manner.   

HeartLander’s ability to efficiently operate in this dynamic 

environment is greatly affected by physiological motion, 

namely the cardiac and respiration cycles.  Synchronization of 

robot motion with minimal intrapericardial pressure results in 

safer and more efficient travel.  The work presented models the 

physiological components of motion using Fourier series and 

estimates their parameters using an Extended Kalman Filter.  

Using the Fourier series parameters, estimates of physiological 

phase values are calculated to be used for step synchronization.  

The proposed methods are demonstrated on data from a 

HeartLander animal study for four locations on the heart.  

Mean respiration phase estimates are shown to be within 5% of 

the true respiration phases, while mean cardiac phase estimates 

are shown to have a minimum error of 11%. 

   

I. INTRODUCTION 

HeartLander is a miniature mobile robot designed to provide 

therapies to the heart in a minimally invasive manner.  The 

robot adheres to and travels over the epicardial surface of the 

heart, within the pericardium, by way of a subxiphoid 

incision in the skin and a small incision to the pericardium. 

 HeartLander, shown in Fig. 1, crawls using an inchworm-

like motion in which flexible drive wires modulate the 

distance between the tandem body sections.  Adhesion to the 

epicardium is achieved using suction.  Motion is generated 

by extending/retracting the drive wires while suction is 

alternated appropriately between the body sections.  Suction, 

drive-wire actuation, and 6-DOF magnetic tracking 

(microBIRD, Ascension Technologies, Burlington, VT) are 

provided by offboard instrumentation through a flexible 

tether.  This tethered design enables the robot to be 

extremely small and still produce significant suction and 

locomotion forces. 

 Previous animal studies have shown HeartLander’s ability 

to access nearly the entire surface of the heart as well as to 

navigate precisely to desired targets by suppressing 

physiological motion in position data using filtering [1].  

Although locomotion and targeting was successfully 
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demonstrated in the study, the efficiency of robot motion, 

defined as the percentage of drive wire motion that resulted 

in movement of the robot with respect to the heart, was 

shown to be only 40%.  Further work demonstrated that 

synchronizing the motion of HeartLander with the 

physiological cycles significantly improved efficiency [2].  

This increase in efficiency is due to stepping only when the 

pressure within the pericardial sac is near its minimum.  

Synchronization in [2] was achieved by detecting 

physiological motion events using an accelerometer placed 

on the surface of the porcine chest. 

 Recent work has aimed to move from detecting 

physiological events using external sensors to modeling the 

motion induced on HeartLander due to respiration and 

cardiac cycles [3].  This work extends a Kalman Filtering 

framework for tracking a point of interest on the surface of 

the heart [4-5] to estimate the position of HeartLander as it 

navigates over the surface of the beating heart using the 

available 6-DOF tracking data.  The Extended Kalman Filter 

(EKF) framework models the physiological motions using 

time-varying Fourier series which enables phase shift 

estimates to be quickly calculated.  Using these techniques, 

step synchronization was successfully demonstrated on a 

physiological motion simulator in a laboratory setting [3]. 

 The present work implements the EKF-based 

physiological motion model on data recorded during 

previous HeartLander animal studies and investigates the 

feasibility of detecting physiological phases from the 6-DOF 

position data.  An overview of the EKF estimation 

framework is presented, as well as the phase value 

estimation.  For a more rigorous description of the EKF 
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Fig. 1.  HeartLander epicardial crawling robot. 
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framework, refer to [3]. 

II.  METHODS 

A. Physiological Motion Model 

The components of robot motion due to the physiological 

cycles are modeled as separate Fourier series, one for the 

cardiac motion and one for respiration [5].  The position of 

the robot, F, is then the sum of the respiratory component, R, 

cardiac component, C, and a DC offset, E.  The model of the 

physiological motion in each direction is given as: 
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where    and    are the number of respiratory and cardiac 

harmonics,    and    are the respiratory and cardiac base 

frequencies,    is the time step,   is the time step index, and 

  is the current time step.  The series parameters are   and   

for respiratory motion, and   and   for cardiac motion.  The 

DC offset component of the motion model, E, is the mean 

position of the point on the heart to which HeartLander is 

attached.  

The linear velocity of the front foot,  , is the average 

velocity of the drive wires,    and   , in the robot/tracker x-

direction.  The motion models of the physiological cycles 

are constructed in world coordinates requiring the front foot 

velocity to be transformed into world coordinates.  

Orientation of the magnetic tracker is represented in 

quaternion format.  Front foot velocity in world coordinates, 

  , is then calculated as the front foot velocity in robot 

coordinates,  , multiplied by the direction of the robot x-

axis in world coordinates. 
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The state vector of the Kalman Filter is composed of 

respiratory and cardiac frequencies,    and   , robot 

location and velocity,   and   , quaternion orientation,  , 

and Fourier series parameters for respiration,   and  , and 

cardiac motion,   and  .  The total number of states included 

depends upon the number of respiratory and cardiac 

harmonics used. In the prediction step of the EKF, the state 

at time k is estimated as the state at the previous time step 

for all parameters except for robot location and velocity,   

and   .   The estimated robot velocity is calculated as in (5), 

and the robot position estimate is given by: 

 

                   . (6)  

 

The measurement vector,     , used in the update step of 

the EKF is composed of the position and quaternion from 

the magnetic tracking system as well as cardiac and 

respiratory frequencies.  Respiration and cardiac frequencies 

are assumed to be constant and known, and in clinical usage 

can be measured using an electrocardiogram and ventilator.  

They are included in the measurement vector so that their 

values can be updated while the filter is in operation. 
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B. Phase Estimation and Synchronization 

Determination of the phases of the physiological cycles 

can be calculated using the Fourier series parameters 

estimated by the EKF.  For each harmonic the phase shifts, 

  , can be calculated. 
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The physiological phases are described using the notation 

of Shechter et al. [6].  The respiration cycle is parameterized 

with expiration occurring in the range -1 to 0 and inspiration 

in the range from 0 to 1.  The cardiac cycle is parameterized 

with systole occurring in the range from 0 to 0.42 and 

diastole occurring in the range from 0.42 to 1.  In this 

notation the respiratory and cardiac phase values,    and   , 

are then estimated using the first-order phase shifts. 
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In order for the proposed method of phase value 

estimation to perform as intended, the directions in which 

the phase shifts are calculated must be chosen such that they 

coincide with end-expiration and end-diastole.  For example 

if end-expiration occurs at the maximum tracker value in the 

x-direction the phase shift is calculated using (8); however, 

if end-expiration occurs at the minimum tracker value in the 

x-direction, the proper direction choice is the negative x-

direction (-X).  This requires the phase shift to be calculated 

negating    and    in (8). 
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III. RESULTS 

A. Data 

The previously described methods for estimating the 

phase of physiological cycles were applied to 6-DOF 

position data logged in a previous animal study.   

Throughout the animal study the heart was allowed to beat 

naturally at approximately 78 beats per minute.  Breathing 

was regulated at 0.2 Hz using a ventilator.  Access to the 

heart was achieved through an incision below the sternum, 

and HeartLander was placed on the epicardium through a 

second small incision in the pericardium [2].  

For the purpose of this study a subset of the data collected 

in the animal study was used.  Four segments of the data 

were identified in which HeartLander was located on the 

anterior wall, posterior wall, right lateral wall, and left 

lateral wall respectively.  This subset was selected such that 

coverage of the heart surface was maximized. 

The global reference frame, in which tracker position was 

reported, was oriented such that the Z-axis was aligned with 

the anterior-posterior axis, the Y-axis was aligned with the 

inferior-superior axis, and the X-axis was aligned with the 

left-right axis, such that the posterior, superior, and 

rightward directions are positive. 

B. True Phase Labeling 

In order to evaluate the performance of the presented 

phase estimation technique, ground truth regarding 

physiological phase values was derived via offline detection 

of respiratory and cardiac events in proxy signals.  ECG was 

used to label end-systole events in the cardiac cycle.  The 

Pan-Tompkins detector was used to identify the QRS 

complex of each heartbeat [7].  The end of diastole 

corresponds with the end of the QRS complex and a phase 

value of 0 and 1.  Using consecutive end-diastole events, the 

phase values for each time step within the events are linearly 

interpolated.  For respiration, end-inspiration events were 

detected using zero-phase-lag filtered data from 

accelerometers placed on the surface of the porcine chest.  

End-inspiration corresponds to phase values of -1 and +1.  

Again, consecutive end-inspiration events were used to 

interpolate phase values for all time steps within the events. 

C. Evaluation 

Phase estimation performance was investigated for each 

of the four robot locations in each principal direction.  For 

each location, the directions which correspond to end-

inspiration and end-diastole were identified.  At each instant, 

phase estimation error was calculated by taking the 

difference of the true phase value and the estimated phase 

value as a percentage of the total period of the cycle. 

Two respiration harmonics and five cardiac harmonics 

were used in the model in each direction for all trials.  

Results of a short section of the EKF state estimation while 

HeartLander is on the left lateral wall of the heart are shown 

 
Fig. 2.  EKF position estimation of HeartLander while crawling on 
the left lateral surface of the heart. 

 

 
Fig. 4.  Cardiac phase estimation while crawling on the left lateral 
surface of the heart.  The negative x-direction was used for phase 

estimation 

 

 
Fig. 3.  Respiration phase estimation while crawling on the left lateral 
surface of the heart.  The negative z-direction was used for phase 

estimation 
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in Fig. 2.  Corresponding phase estimations for respiration 

and cardiac motion are shown in Figs. 3 and 4, respectively.  

The estimates of phase were calculated using the negative z-

direction (-Z) for respiration and the negative x-direction (-

X) for the cardiac phase.  Statistics for phase estimation in 

each direction for each of the four locations are shown in 

Table I for respiration and Table II for cardiac phase.  For 

respiration, phase estimation was quite accurate, having a 

mean phase value error of less than 5% for all tests except 

for the y-direction of the left lateral wall data, where the 

amplitude of respiratory component of motion was near 

zero.  The amplitude of the respiratory component in the x-

direction for the posterior wall test was also very near zero, 

leading to poor performance and high standard deviation.  

For each of the four locations on the heart the phase 

estimation in the negative z-direction (-Z) was less than 4%, 

with relatively low standard deviation.  

Results for cardiac phase estimation were generally less 

accurate than the respiration phase estimation.  The best 

result achieved occurred for the right lateral wall location in 

the negative z-direction, which had a mean error of 

approximately 11%.  There was no single global coordinate 

direction which showed the best performance for all 

locations. 

IV. DISCUSSION 

The respiration phase estimation method presented 

performed well on the animal model data.  The respiratory 

component of motion is slower and more regular than the 

cardiac component, making its estimation more stable.   

Also, the phase estimation method worked almost equally 

well for all four locations in the negative z-direction 

suggesting that the anterior direction be used for respiration 

phase detection for the entire heart.  

The proposed method did not perform as well for 

predicting the cardiac phase.  The cardiac component of 

motion is more complicated than the respiration signal, and 

the first order approximation used when calculating the 

phase values may be an oversimplification.  Work is 

ongoing on the presented methods to provide more accurate 

estimates of cardiac phase values. 

Planned future work includes animal model studies where 

greater coverage of the surface of the beating heart is 

achieved.  These tests will be used to demonstrate 

physiological phase estimation in real time, as well as 

building a dense map of the motion of the heart due to 

physiological cycles.  Using this data the best coordinate 

directions to use for phase estimation may be identified for 

the entire surface of the heart. 
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TABLE I 

RESPIRATION PHASE ESTIMATION RESULTS 

Location Direction 
Mean 

Error [%] 

Standard 

Deviation [%] 

 X -3.0 4.8 
Anterior Wall -Y -3.7 5.4 

 -Z -3.9 2.0 

 -X 4.8 23.8 
Posterior Wall -Y -4.2 1.0 

 -Z -2.3 0.8 

 X -1.2 1.4 

Left Lateral Wall Y 19.9 12.3 
 -Z -3.1 1.2 

 -X 3.7 11.9 

Right Lateral Wall -Y -0.2 1.8 
 -Z -2.4 1.4 

Errors and standard deviations are reported as percentage of a cycle.  
Negative values indicate that the estimated phase value leads the true 

phase value. 

 

 

TABLE II 

CARDIAC PHASE ESTIMATION RESULTS 

Location Direction 
Mean Error 

[%] 

Standard 

Deviation [%] 

 -X -21.9 9.3 
Anterior Wall Y -21.8 5.8 

 -Z -16.2 10.6 

 -X -10.9 4.5 
Posterior Wall -Y 12.5 9.5 

 Z -18.3 6.5 

 -X -13.2 2.8 

Left Lateral Wall -Y 20.0 7.6 
 -Z -20.2 5.1 

 X 14.6 3.5 

Right Lateral Wall -Y 22.3 4.9 
 -Z -11.4 4.8 

Errors and standard deviations are reported as percentage of a cycle.  
Negative values indicate that the estimated phase value leads the true 

phase value. 
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