
  

  

Abstract—Perinatal hypoxia is a significant cause of brain 
injury in preterm infants. Neuroprotective treatments have 
proven beneficial when commenced within 6-8 hours post 
hypoxic-ischemic insult. However, as the exact time of injury is 
unknown, there are no current means to determine which 
infants are in the treatment phase of the evolving injury. 
Recent studies suggest epileptiform transients in the first 6-8 
hours are predictive of outcome. To quantify this further an 
automated means of transient identification is required.  In this 
paper we describe a method using Haar wavelets to detect 
spikes in the preterm fetal sheep EEG after asphyxia in utero. 
The method exhibits good sensitivity and selectivity over 3 
specific time periods and demonstrates the feasibility of using 
wavelets for spike detection in fetal sheep. 

I. INTRODUCTION 

YPOXIA before or during birth plays a key role in the 
development of brain injury in preterm infants [1]. 

During recovery from an hypoxic insult, a latent recovery 
phase lasting up to 6-8 hours post-insult provides a narrow 
window during which neuroprotective treatments must be 
initiated for maximum efficacy [2]. Currently, however, 
there are no biomarkers which define the latent phase [3]. 
 Electroencephalography (EEG) is easily measureable and 
has utility in defining the evolution of injury. Amplitude 
suppression and high amplitude seizures are predictive of 
outcome after hypoxia, but only after the window of 
opportunity for treatment has passed [2, 3]. Recent studies 
suggest that more subtle features of the EEG during the 
latent phase may be predictive of outcome [3]. These 
features are epileptiform transients - typically low 
amplitude, high frequency (<400 ms) events such as spikes, 
sharp waves and slow waves that may occur in isolation, in 
multiples or as complexes [3]. Neonatal monitoring leaves 
clinicians with vast amounts of data to review and quantify, 
 

Manuscript received March 25, 2011. This work was supported by a Top 
Achiever Doctoral Scholarship from the Tertiary Education Commission, 
New Zealand, the Auckland Medical Research Foundation and the Health 
Research Council, New Zealand. 

A. C. Walbran is with the Department of Engineering Science, The 
University of Auckland, Auckland 1010, New Zealand. (phone: +64-9-373-
7599 ext 87061; fax: +69-9-373-7468; e-mail: a.walbran@auckland.ac.nz).  

C. P. Unsworth is a Senior Lecturer at the Department of Engineering 
Science, The University of Auckland. Auckland 1010, New Zealand. (e-
mail: c.unsworth@auckland.ac.nz). 

L. Bennet is a Professor in the Department of Physiology, Faculty of 
Medical and Health Sciences, The University of Auckland, Private Bag 
92019, Auckland, New Zealand (email:l.bennet@auckland.ac.nz). 

A. J. Gunn is a Professor in the Department of Physiology, Faculty of 
Medical and Health Sciences, The University of Auckland, Private Bag 
92019, Auckland, New Zealand (email: aj.gunn@auckland.ac.nz). 

highlighting the need for signal analysis to be automated.  
Wavelet analysis is suited to the detection of epileptiform 

transients because it allows flexible time-frequency 
resolution. Wavelets decompose a signal into scales where 
each scale covers a different frequency range, thereby 
enabling transients to be separated from the rest of the data. 
Several approaches have been presented in the literature for 
the detection of epileptiform transients using various wavelet 
families [4-6]. In this study we employ the Haar wavelet. 
The Haar wavelet has previously been used for ocular 
artifact de-noising [7, 8] and the separation of background 
activity and transient phenomena in EEG signals [9]. 
Quiroga et al. used a Haar wavelet decomposition as a 
precursor to superparamagnetic clustering for the detection 
of spikes [10]. 
 The aim of this study was to develop a simple and robust 
method, requiring minimal user intervention, to assess spike 
activity in a preterm fetal sheep model after asphyxia in 
utero at 3 specific time periods within the latent phase.  

II. METHODS 

A. Data acquisition 
All procedures were approved by the Animal Ethics 

Committee of The University of Auckland. One singleton 
Romney/Suffolk sheep fetus of 98 days gestation (term = 
147 days [11]) was instrumented under general anesthesia 
using sterile techniques. A catheter was inserted in the fetal 
brachial artery to allow blood sampling. Two pairs of EEG 
electrodes (Cooner Wire Co., USA) were secured on the 
dura over the parasagittal parietal cortex. A reference 
electrode was sewn over the occiput. An inflatable silicone 
occluder (In Vivo Metric, USA) was placed around the 
umbilical cord prior to returning the fetus to the uterus. 
During post-surgical recovery the ewe was housed with 
companion sheep, fed ad libitum and given daily intravenous 
antiobiotics (600 mg Benzylpencillin Sodium; 80 mg 
Gentamicin). Fetal arterial blood samples were taken daily to 
monitor fetal health and perform blood gas analysis. 

At 103 days gestation (~27-30 weeks human brain 
maturation [12]) fetal asphyxia was induced by complete 
umbilical cord occlusion for 25 min. Fetal blood was 
sampled before, during and after asphyxia for blood gas 
analysis (Ciba-Corning Diagnostics 845 Blood Gas 
Analyzer/Co-oximeter, USA). The left and right fetal EEG 
signals were channelled through individual unity-gain head-
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stages for reduction of noise by selective signal 
amplification (×10,000). Low-pass filtering with a sixth-
order low-pass Butterworth anti-aliasing filter, with the -3 
dB point set to a cut-off frequency of 50 Hz, was performed. 
The fetal EEG was recorded for 8 hours post-asphyxia and 
digitised at a frequency of 64Hz. 

B. Epoch Analysis 
In this analysis, spike activity was determined in 10 min 

bins during 3 specific time periods during the latent phase; 
0.5 hour (h), 3.0 h and 6.2 h. These time points were chosen 
to determine spike activity during 1) the early-latent phase, 
where there is profound EEG amplitude suppression and 
cerebral hypoperfusion [1], 2) the mid-latent phase, the 
beginning of progressive metabolic deterioration and where 
maximal transient activity has been observed previously [1, 
13], and 3) the late-latent recovery phase, where transient 
activity decreases just prior to the onset of large amplitude 
seizures, beyond which treatment is no longer effective [1]. 

C. Waveform analysis 
All spikes of the left EEG during the 3 latent time periods 

were manually identified by the authors. A spike was 
defined as having a sharp outline and duration of less than 
70 ms, corresponding to frequencies greater than 14.3 Hz, 
typically superimposed on a suppressed EEG background 
[14]. Spike amplitude was defined to be greater than 20 µV. 

D. Wavelet theory 
Wavelet analysis is a time-frequency based method useful 

for processing non-stationary signals whose constituent 
frequencies vary with time. The main advantage of wavelet 
analysis over techniques such as the short time Fourier 
transform is that it can provide optimal resolution in both 
time and frequency [10, 15]. The wavelet transform (WT) 
maps a signal from a time-based representation to a 
representation based on discrete scales m and discrete times 
n. The WT is defined as the convolution of a signal x(t) with 
dilated and translated versions of a mother wavelet ψm,n(t), 

 
                        >=< )(),( ,, ttxT nmnm ψ .                          (1) 

 
By calculating the transform at various scales and 

locations we obtain a multiresolution decomposition of the 
signal whereby the signal has been separated into detail and 
approximation coefficients. Due to the redundancy of the 
procedure, power-of-two logarithmic scaling of dilation and 
translation steps is often used; this is known as the dyadic 
grid arrangement [15]. The shape of the wavelet function 
should reflect the type of feature to be isolated in the signal. 
The Haar wavelet is suited to time series with sharp jumps or 
steps so is useful for isolating peaks or discontinuities [4]. 
Additionally, it has compact support and is orthogonal so 
allows spikes to be represented with few coefficients and 
without a priori assumptions regarding the shapes of the 
spikes [10]. For these reasons, the WT is implemented using 
the Haar wavelet in this study.  

The Haar mother wavelet is given by, 
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A signal can be decomposed into approximation (S) and 

detail (T) coefficients using (3) and (4) [15]. 
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The approximation coefficients give a coarse signal 

representation [10] while the detail coefficients retain the 
dropped components [5]. By analysing the signal detail at 
the appropriate scale it is possible to detect spikes. The 
signal detail approximation at each scale m can be obtained 
by,  
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where M is the number of scales for a full decomposition 
and the scaling wavelet function is given by (6), representing 
scaled and translated versions of the mother wavelet. 
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E. Haar wavelet signal decomposition 
We use a Haar wavelet analysis to detect EEG spikes. Our 

data has a sampling rate of 64 Hz so assuming optimal 
sampling at the Nyquist frequency was performed our 
frequency range is 0-32 Hz. A full signal decomposition was 
performed and the frequency sub-bands for the first 4 
decomposition levels are given in Table I. 
 

TABLE I 
FREQUENCY SUB-BANDS 

Scale m 
Approximation 
frequency band (Hz) 

Detail frequency 
band (Hz) 

1 0-16 16-32 
2 0-8 8-16 
3 0-4 4-8 
4 0-2 2-4 

 
At scale 1, the frequency components of the signal detail 

encompass most frequency components of spikes. Therefore, 
the signal detail in scale 1 is expected to be large when 
spikes are contained in the data. Fig. 1 shows the detail 
coefficients for m = 1 - 4 in a 6 s segment of data containing 
spikes. Large detail coefficients are observed at m = 1 and m 
= 2, where spikes are located in the EEG time series thus 
confirming the relationship between large signal detail and 
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spike presence. Therefore, if the detail coefficients exceed a 
defined threshold, we can say that a spike is likely to exist in 
the data. We focussed on detecting spikes in scale 1 as it best 
encompasses the frequency components of spikes. 
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Fig. 1. Detail coefficients at scales m = 1 – 4 for the 6 s segment of EEG 
data in Fig. 2A. Large detail coefficients are observed where spikes are 
located in the time domain. 

F. Haar wavelet analysis 
The EEG was de-meaned and normalised and then a Haar 

wavelet decomposition performed for the 10 min EEG 
segments at the 3 specified time periods in the latent phase. 
A non-overlapping window of 1024 data points was 
employed. At scale 1 this translates to a frequency resolution 
of 0.125 Hz. Next, the signal detail was constructed at each 
scale using the scaling wavelet function. Following quick 
visual inspection of the scale 1 detail coefficients, a 
threshold was defined heuristically in order to extract the 
large detail coefficients corresponding to spikes in the time 
domain. Thresholding was performed on the raw detail 
coefficients, rather than absolute values, so that the 
coefficients corresponding to negative polarity spikes would 
be retained. If the absolute value of the detail coefficient 
exceeded the threshold, the data point number was recorded 
as a potential spike location. To ensure the potential 
detection was above the 20 μV amplitude criteria for a spike, 
a tight window was defined around the potential spike 
location and the amplitude of the detection was checked in 
the corresponding section of the EEG time series. If the 
detection did not exceed the amplitude criteria then it was 
removed as a potential spike detection. When moving in 
time along the detail coefficients array during thresholding, 
if a spike location was found, the increment along the array 
moved forward by the average spike width to prevent the 
same spike being detected twice. The potential spike 
locations detected from the analysis were then compared 
with the start location of the spikes manually identified by 
the authors. 

G. Performance evaluation 
Algorithm performance was evaluated in terms of 

sensitivity, the proportion of actual spikes correctly detected 
by the algorithm (7), selectivity, the proportion of algorithm 
detections that are actual spikes (8) [6] and overall algorithm 
performance, the average of sensitivity and selectivity (9),  

                 100)/( ×+= FNTPTPySensitivit                         (7) 
                 100)/( ×+= FPTPTPySelectivit                         (8) 
    2/)(_ ySelectivitySensitiviteperformancOverall +=          (9) 
 

A true positive (TP) is a spike detected by the algorithm that 
was also identified by the expert, a false positive (FP) is a 
spike detected by the algorithm that was not identified by the 
expert, and a false negative (FN) is a spike identified by the 
expert but not detected by the algorithm.  

The position error was calculated to measure the error 
between the spike location detected by the algorithm Ai and 
the spike start location identified by the expert Ei for all true 
positive detections (10). 

 
iii EAerrorPosition −=_                     (10) 

III. RESULTS 

A. Blood composition measurements 
Complete umbilical cord occlusion induced profound 

hypoxia, hypercapnia and acidosis which rapidly resolved 
after release of the occluder (Table II). 

B. Performance evaluation 
An example segment of raw left EEG from the early-

latent phase is depicted in Fig. 2A with spikes identified by 
the authors marked with an arrow. The corresponding detail 
coefficients at scale 1 are shown in Fig. 2B. As expected the 
large detail coefficients align with the spikes in the time 
domain. 

The authors identified 213, 88 and 73 spikes in the early-, 
mid- and late-latent phases respectively. Table III provides 
the algorithm performance in terms of sensitivity, selectivity, 
overall performance and position error at the optimal 
threshold level. The optimal threshold level was determined 
to be that which minimised the difference between 
sensitivity and selectivity. 
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Fig. 2. A: Raw left EEG segment with spikes marked by the arrow. B: 
Corresponding detail coefficients from scale 1.  
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TABLE II 
BLOOD COMPOSITION RESULTS 

  Baseline Asphyxia 30 min 
post 

3 hour 
post 

6 hour 
post 

pH 7.36 6.98 7.21 7.39 7.37 
PaCO2 (mmHg) 45.6 152.3 48.3 44.8 45.9 
PaO2 (mmHg) 24.2 6.9 28.9 27.6 26.8 

pH, partial pressure of arterial carbon dioxide (PaCO2) and partial pressure 
of arterial oxygen (PaO2) values 30 min before occlusion (baseline), after 20 
min of occlusion (asphyxia) and 30 min, 3 and 6 hours after the end of 
occlusion (post). 
 

TABLE III 
ALGORITHM PERFORMANCE 

Early-latent Mid-latent Late-latent 
Threshold 0.022 0.031 0.07 
Sensitivity (%) 80.3 81.8 74.0 
Selectivity (%) 79.2 82.8 71.1 
Overall performance (%) 79.8 82.3 72.6 
Position error (10th, 90th 
percentile)  (-1, 2) (-1, 2) (0, 2) 

The position error is given in terms of the number of data points. 

IV. DISCUSSION 
We have presented a simple and effective method for the 

detection of epileptiform spikes in the preterm fetal sheep 
EEG during the latent phase following an hypoxic insult. 
The method offers good sensitivity and selectivity and 
minimal error in detected spike locations, demonstrating the 
feasibility of using wavelets to detect spikes in the fetal 
sheep EEG hypoxic-ischemic model. Our results show that 
the best results in terms of sensitivity and selectivity were 
obtained  in the following order: mid-, early- then late-latent 
phase. The lower performance in the late latent phase was 
primarily due to the increased number of sharp waves, with 
those around 70 ms appearing as false positives.  

A limitation of the algorithm is that small amplitude 
spikes can be missed due to the threshold value chosen. 
Lowering the threshold will allow more of these small 
amplitude spikes to be detected therefore increasing 
sensitivity, however, this is at the expense of selectivity as 
additional false positives arise. Unlike other approaches such 
as [6] where only the largest amplitude spike occurring 
within a 3 s sampling period is detected, our method is able 
to detect single spikes as well as multiple spikes located very 
closely in time. Seldom does the algorithm miss a spike that 
occurs immediately after another in time. 

In all three latent periods at least 80% of spikes were 
detected within -1 to 2 data points of the expert identified 
spike location demonstrating that the algorithm is able to 
extract spike location with high accuracy. 

Although the Haar wavelet is suited to detecting sharp 
jumps or steps in the data [4], as are characteristic of spikes, 
it is likely not the best wavelet to use. Future work will 
include employing other mother wavelets to detect spikes. 
We intend to extend the analysis to include the detection of 
sharp waves to provide enhanced ability to determine which 
phase of evolving injury the brain is in. The algorithms will 
be applied to a larger cohort of animals and refined further 
as necessary.  
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