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Abstract— Due to the large volume of information generated 
in an electroencephalographic (EEG) study, compression is 
needed for storage, processing or transmission for analysis. In 
this paper we evaluate and compare two lossy compression 
techniques applied to EEG signals. It compares the 
performance of compression schemes with decomposition by 
filter banks or wavelet Packets transformation, seeking the best 
value for compression, best quality and more efficient real time 
implementation. Due to specific properties of EEG signals, we 
propose a quantization stage adapted to the dynamic range of 
each band, looking for higher quality. The results show that the 
compressor with filter bank performs better than transform 
methods. Quantization adapted to the dynamic range 
significantly enhances the quality. 

I. INTRODUCTION 
EG signals represent the electrical activity of the brain 
captured on the scalp surface. These signals are 

important for studying many brain conditions including 
sleep disorders, epilepsy, Alzheimer's disease, etc. Diagnosis 
is primarily based on visual inspection and interpretation of 
signal waveforms. Nowadays, as part of the development of 
computer and telecommunication technologies, EEG signals 
are commonly stored, transmitted and/or automatically 
processed. Telemedicine has become more and more 
important, especially in rural areas, emergency medicine or 
as a second choice in health care [1]. In these “digital” 
contexts, the technical quality of EEG recordings must be 
satisfactory for purposes of clinical use. Typical sampling 
conditions use 250 Hz and 12 bits or higher [2], and a large 
number of recording channels during long periods of time 
are not uncommon. Under these circumstances, data 
reduction can become very desirable or even mandatory. 

Data reduction techniques are generally classified into two 
categories: lossless and lossy. Lossless compression always 

achieves an exact replica of the original signal. Lossy 
compression, on the other hand, can only achieve some level 
of similarity with the original signal and then, signal quality 
assessment becomes an important performance issue.  
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Research on signal compression has generated a number 
of coding techniques tailored to reduce the amount of EEG 
data [3,4]. Lossless methods haven't proved to be very 
efficient in terms of data reduction capabilities [3-5]. 
Alternatively, lossy compression methods typically offer 
higher compression ratios at a cost of some signal 
degradation [6-9]. Apart from obtaining good compression 
ratios with imperceptible degradation of signal quality, data 
reduction techniques should also hold low computational 
costs; particularly if they are going to be implemented on 
portable devices.  

Many EEG rhythms and waveforms have known and 
localized spectral content and then, subband decomposition 
becomes an attractive approach for signal coding [10]. This 
paper proposes a lossy compression method that uses 
Nearly-Perfect Reconstruction Cosine-Modulated Filter 
Banks (N-PR CMFB) [11] to decompose the EEG signal 
into clinically significant subbands, quantizes the subband 
samples and run length encodes the stream of quantized 
samples. The proposed method attains high compression 
ratios and guaranties adequate quality of the reconstructed 
signals for medical diagnosis. The N-PR CMFB leads to low 
computational complexity as there exist fast and efficient 
implementations of the analysis and synthesis filter banks 
[12]. This paper also presents a direct comparison of the 
proposed algorithm with another multirate approach based 
on wavelet packet decomposition. Finally we adapt the 
quantization phase of the method to the dynamic range of 
each subband, as a means to further improve reconstructed 
signal quality.    

II. PERFORMANCE METRICS 
The ultimate purpose of any compression algorithm is to 

reduce the number of bits to represent the original signal, 
which is assessed by means of the compression ratio (CR). 

            .
     

number of bits of original signalCR
number of bits of compressed signal

=          (1) 

To reach this goal, compression methods introduce 
certain, sometimes undesirable, effects such as the increase 
of computational complexity, processing delays, and coding 
noise or distortion. Percent root-mean square difference 
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(PRD) is commonly used to quantify the effect of distortion.   
Let [ ]x n and ˆ[ ]x n  be the original and reconstructed signals 

respectively, N the length of the window over which the 
metrics are calculated, an expression for PRD which signal 
is given by: 
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This parameter is a global indicator of the quality of the 
reconstructed signal and allows inferring how closely the 
algorithm has preserved the original signal waveforms. 
Lower values indicate closer preservation of signal 
waveforms.  

III. COSINE MODULATED FILTER BANK 
In this paper we use N-PR CMFB as a method to split 

segments of the input signal into several, clinically 
meaningful, uniformly distributed frequency bands. The 
interest for these filter banks is based on its efficient 
implementation capacity through polyphase structures that 
significantly reduce computational complexity [11].   

An N-PR CMFB is a subclass of modulated M-channel 
maximally decimated filter bank whose structure is shown in 
Fig. 1.  
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Fig. 1. Schematic of a filter bank of M channels. 

The design of all the analysis   and synthesis [ ]kh n [ ]kf n
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filters, , , is based on cosine 
modulated  versions of a low-pass prototype filter  as 
follows:   
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We designed two filter banks with 16 and 32 channels in 
order to decompose digitally sampled EEG signals, into 
subbands of 8 or 4 Hz of bandwidth respectively, as most 
meaningful EEG rhythms and waveforms have disjoint 
frequency content that lie in an approximately 4Hz-wide 
bands [10]. We followed the technique proposed in [11] to 
design the linear-phase prototype lowpass filter . [ ]p n

IV. WAVELET PACKETS  
Wavelet Packets (WP) represent a generalization of the 

DWT (discrete wavelets transform). Wavelet packet 
decomposition is commonly implemented by repeated 
application of a two channel orthonormal filter bank. The 
result is a complete binary tree as in Fig. 2 with a number of 
levels that depends on the desired resolution scale. 
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Fig. 2. Complete binary tree of 3 levels to the WP transform. 

The binary tree represents a library of bases that can be 
selected by a process of pruning to efficiently represent the 
input signal. In this work we have used unpruned trees with 
4 and 5 decomposition levels in order to compare WP 
decomposition with the N-PR CMFB already designed. 

V. COMPRESSION SCHEME USED 
The general scheme of our compression method is shown 

in Fig. 3. The EEG signal is divided into non-overlapped 
segments [ ]x n  of 2048 samples and the algorithm processes 
each segment independently. The first stage focuses on 
signal decorrelation using one of the previously mentioned 
decomposition methods: namely the N-PR CMFB and WP 
decompositions.  

       Signal
descomposition:
 -  N-PR CMFB
 -  WP

Quantization Source coding

x[n] y[n] y[n]^ c[n]

 
Fig. 3. Compression scheme. 

The second stage performs quality driven quantization of 
subband coefficients [ ]y n based on thresholding. Thresholds 
are calculated based on the distortion that can be tolerated on 
reconstructed signals [12] and distortion is measured using 
the PRD equation (2). Subband samples that remain after 
thresholding undergo scalar quantization. We have selected 
and compared two scalar quantization approaches: 
• Uniform scalar quantization using 7 bits that covers the 

dynamic range of the signal segment. 
• Uniform scalar quantization adapted to the dynamic 

range of each band. The number of bits needed for each 
subband is calculated based on the dynamic range the 
corresponding subband. 

The last stage uses run length encoding (RLE) to 
efficiently code the possibly, large number of zero-valued 
samples output ŷ[n] during the thresholding process. Finally 

 is a coded stream bits. [ ]c n
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VI. RESULTS 
Our experiments were performed on a comprehensive set 

of EEG signals extracted from the publicly available MIT-
BIH Polysomnographic Database [2]. Sampling conditions 
in this database use 250Hz sampling frequency and 12 bits 
per sample resolution.  

A. Analysis with N-PR CMFB 
In our first experiment we use N-PR CMFB 

decomposition, thresholding, uniform quantization and RLC. 
Figure 4 shows the results, in terms of rate distortion curves 
(CR vs. PRD), when both, the 16 channel and the 32 channel 
filter banks were used for compressing the EEG signal from 
the slp01a record of the mentioned database. We varied a 
target PRD (PRDaim) from 1 and 10 and checked the effect 
on CR and the actual PRD of the reconstructed signal. 
Instead of plotting the PRD of the entire signal, we present 
the mean values and standard deviations (STD) calculated 
from the PRDs obtained upon reconstruction of signal 
segments. We can notice that better results are obtained with 
filter banks of 16 bands. However, the compression 
performance is far from the one achieved using a similar 
compression scheme on ECG signals [12]. The main reason 
for this performance mismatch is that the EEG signal 
exhibits a more information spread over much of the 
frequency spectrum [10]. Therefore, thresholding does not 
always produce a large number of zero-valued samples and 
prevents the encoding stage based on RLE from achieving a 
high compression. Another important fact that can be drawn 
from Fig. 4 is that there exists a lower bound on the expected 
PRD that can be used.  
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Fig. 4. PRD ± STD vs CR for slp01a signal, with 7-bit uniform quantization, 
for 16 and 32 bands N-PR CMFB. 

 
This limitation arises mainly because we are employing a 
coarse quantization scheme that uses 7 bits to represent any 
subband sample. To a lesser extent, the use of N-PR CMFB 
filter banks also contributes to coding noise. 

B.  Analysis with WPs 
We ran the same experiment as in section VI.A but in this 

case we used WP decomposition. WP trees were grown to 
depths 4 and 5 resulting in filter bank structures like those 
used with N-PR CMFB. Periodic extension was used at 

segment boundaries. Some wavelet packet bases were 
evaluated and the discrete Meyer wavelet basis (dmey) was 
chosen as it resulted the one with the fewest number of 
nonzero coefficients after thresholding was performed with 
respect to a target PRD. 

Figure 5 shows the rate distortion curve generated after 
applying the compression algorithm with WP decomposition 
to the EEG signal of the slp01a record from the database. 
Although the mean values remain very similar to those 
obtained when N-PR CMFB decomposition was used; 
deviation from these values were significantly higher.  
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Fig. 5. 7-bit uniform quantization, PRD ± STD vs. CR, for the signal slp01a, 
4 and 5 levels WP, dmey. 

Table I presents explicit numeric performance comparison 
between the two signal decomposition approaches after 
compressing the signal with a target PRD ( PRDaim) 5% and 
10%. It remains clear that results obtained with N-PR CMFB 
outperformed those obtained when WP decomposition was 
used, meaning that the distortion of any segment is closer to 
the distortion constraint we specified. 

Table I. Comparative between N-PR CMFB and WP for slp01a signal. 
Parameter N-PR CMFB 16 WP 4 levels 
PRDaim 5 10 5 10 

PRD 5.01 10.03 5.00 10.00 
STD 0.23 0.46 1.00 2.06 

PRDmax 6.41 11.74 12.12 24.11 
CR 7.54 12.62 7.26 12.29 

Similar performance to that shown in Table 1 was achieved 
for other signals of this database. Other reported lossy 
compression techniques (See [9] and refs. herein), achieve 
similar performance indicators, but with higher 
computational demands. Unfortunately, we cannot make a 
fair and direct comparison with these other techniques as 
they use different EEG databases and sampling conditions. 

C. Quantization adapted to the dynamic range of each 
band 

In our compression scheme, uniform quantization after 
thresholding can introduce significant errors, mainly when 
low PRD values are expected. This experiment is carried out 
with the aim of improving the results obtained above, for 
PRD values lower than 5 and also to ensure that there will be 
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no significant local errors, as evidenced in the STD and 
PRDmax. For this purpose, quantization of nonzero 
coefficients after thresholding is adapted to the dynamic 
range of each band of the filter bank 16 and 32 channels of 
the type N-PR CMFB. The number of quantization bits in 
any subband depended on the dynamic range held by the 
samples in that subband. We also set upper bounds to the 
number of quantization bits to check the impact on distortion 
of this quantization step. Again, the EEG signal from the 
Slp01a record of the database was selected for comparing 
compression results. Figure 6 presents compression results 
when the maximum number of quantization bits was set to 7 
bits. If we compare this figure with Figure 4, in which the 
same uniform quantization was used for all the subbands we 
observe a more linear behavior for PRD values below 5. 
Figure 7 shows the simulation results when the maximum 
number of quantization bits was raised to 8 bits. The use of 8 
bits results in higher quality of reconstructed signals but it 
also has a detrimental effect on CR. In general, this 
quantization approach results in better reconstructed signal 
quality at the expense of some decrement of CR. 

Table II. Results for slp01a signal. 
Parameter N-PR CMFB 16 N-PR CMFB 32 
Quant. bits 7  8  7  8  
PRDmin 1.12 0.62 1.09 0.69 

STD 0.18 0.07 0.15 0.08 
PRDmax 1.94 0.99 1.98 1.21 

CR 2.43 2.34 2.65 2.59 

Using 8 bit adaptive quantization almost halves distortion 
performance with little impact on compression ratio.   

VII. CONCLUSION 
The results of this work show that the decomposition 

using filter banks N-PR CMFTB performs better than WP 
when a uniform quantizer is used. The use of these filter 
banks are very useful for lossy compression of EEG signals 
to achieve high compression ratio when high quality is 
demanded. In this way, waveform morphology of signal may 
be better guaranteed for diagnosing neurological disease. 
Quantization based on thresholding introduces error. This 
effect can be minimized when quantization is adapted to the 
range values of each band. However, this manner of 
encoding reduces the compression ratio. Other coding 
techniques better adapted to the decomposition strategies 
used, and more suitable criteria for quality assessment must 
be found, to ensure clinical acceptability of reconstructed 
waveforms.  
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