
  

  

Abstract—Electrical signals between connected neural nuclei 

are difficult to model because of the complexity and high 

number of paths within the brain.  Simple parametric models 

are therefore often used.  A multiscale version of the 

autoregressive with exogenous input (MS-ARX) model has 

recently been developed which allows selection of the optimal 

amount of filtering and decimation depending on the signal-to-

noise ratio and degree of predictability.  In this paper we apply 

the MS-ARX model to cortical electroencephalograms and 

subthalamic local field potentials simultaneously recorded from 

anesthetized rodent brains.  We demonstrate that the MS-ARX 

model produces better predictions than traditional ARX 

modeling.  We also adapt the MS-ARX results to show 

differences in inter-nuclei predictability between normal rats 

and rats with 6OHDA-induced parkinsonism, indicating that 

this method may have broad applicability to other neuro-

electrophysiological studies. 

I. INTRODUCTION 

ARIOUS types of methods have been used to assess the 

degree of similarity or shared information between two 

signals.  The methods used depend on the type of the 

presumptive system which processes the one “input” signal 

into the other “output” signal.  Two basic classifications of 

systems are whether they are memoryless or not, and whether 

they are linear or not.  

Common linear memoryless methods include the cross-

correlation in the time-domain or coherence in the frequency 

domain. Common linear models with memory include 

autoregressive models with exogenous input (ARX), 

autoregressive moving average (ARMA), Box-Jenkins, 

Output-Error, and linear state-space models. 

Higher-order nonlinear methods with memory are also 

sometimes used, such as polyspectral models, nonlinear 

ARX models, neural networks, Hammerstein-Wiener 

models, and Volterra models, but these are more difficult to 

train. 

Other statistical evaluations of the similarity focus on 

the transfer of information between two signals, rather than 

explicit modeling and prediction. Examples of these analyses 

 
Manuscript received April 15, 2011. This work was supported in part by 

the NIH NINDS RO1NS42402, HRSA DIBTH0632, PA Tobacco 

Settlement Funds Biomedical Research Grant, PSUHMC Movement 

Disorders Brain Repair Fund, NCCAMR21 AT001607 to Thyagarajan 

Subramanian, and GRSA to Tim Gilmour via PA Tobacco Settlement 

Funds (the Pennsylvania Department of Health specifically disclaims 

responsibility for any analyses, interpretations or conclusions). 

T. P. Gilmour is with the Pennsylvania State University, Electrical 

Engineering Department, University Park, PA 16802 USA (phone: 717-

531-0003 x 283837; fax: 717-531-0996-; e-mail: timgilmour@psu.edu).  

T. Subramanian is with the Pennsylvania State University Hershey 

Medical Center, Neurology Department, 500 University Drive, Hershey, PA 

17033 USA (e-mail: tsubramanian@hmc.psu.edu). 

include Granger causality analysis, time-delay mutual 

information, and transfer entropy.  The information-theoretic 

analyses can measure nonlinear as well as linear effects. 

Complex systems such as the brain are difficult to 

analyze because of the huge number of individual 

neuronal/synaptic paths between nuclei, the nonlinear nature 

of neuronal connections, and the operation at multiple time 

scales.   

One approach is to use simple low-order linear models 

to approximate the transfer function relationship, such as 

autoregressive with exogenous (ARX) models. The 

performance of such models depends crucially on the model 

order, scale, and pre-filtering. A multiscale version of the 

autoregressive with exogenous input (MS-ARX) model has 

recently been developed by Nounou and colleagues [1].  The 

MS-ARX model allows automatic selection of the optimal 

scale for the ARX prediction. 

In this paper we adapt and apply the MS-ARX model to 

evaluate the degree of information transfer between cortical 

electroencephalogram (EEG) and subthalamic nucleus 

(STN) local field potential (LFP) signals.  In a rat model of 

Parkinson's disease, the multiscale ARX approach showed 

significant differences in connectivity compared to normal. 

II. METHODS 

A. Autoregressive System Identification 

 The ARX model is a common method to represent output 

signals from an unknown system by using a linear 

combination of past output signal values and past input 

values.  We will be following the notation of Nounou and 

colleagues in our model description. The equation for the 

ARX model is 
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where y is the output, u is the input, iα and mβ are the 

estimated system coefficients, and p and q are the maximum 

orders of the autoregressive and input filters, respectively.  

Equation (1) may be written in matrix form as  

θXY = , where  
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The weight parameters iα and mβ may be solved using least 

squares:  

( ) YXXX
TT

LS
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The maximum filter lengths p and q may be estimated by 

minimizing some criterion such as the Akaike information 

criterion (AIC): 

AIC = )ln(2 Lr − ,           (4) 

where r is the number of model parameters, and L is the 

likelihood function quantifying the model goodness-of-fit. 

B. Wavelet Decomposition 

Signals may be decomposed into a multiscale time-

frequency representation by projecting the signal onto an 

orthonormal set of basis functions.  These functions 

correspond to a particular scale and translation of a 

prototype scaling function )(tjkφ  and wavelet function 

)(tjkψ , given by: 
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For the Haar wavelet used in this paper,  
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C. Multiscale ARX Modeling 

We applied the multiscale ARX approach presented by 

Nounou and colleagues.  Briefly, the input (EEG) and output 

(LFP) data was first split in half into a training and a 

validation set.  Second, both sets were decomposed using 

Haar wavelets into multiple scaled approximations in 

addition to the original undecimated scale.  Third, at each 

scale an ARX model was trained using the model structure 

selected by an AIC minimization.  Fourth, the computed 

ARX model from each scale was converted to the original 

sampling rate using the following theorem proved by 

Nounou et al: an ARX transfer function 

)()(/)( zGzUzY jj =  at scale j is equivalent to the 

transfer function )()(/)( 2

00

j
zGzUzY =  at scale 0, the 

original undecimated scale.  Fifth, the optimal scale ARX 

model was selected as the one which provided the smallest 

mean-square error (MSE) on the validation set (Fig. 1).  The 

MSE is defined as: 
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D. Neural Data Collection 

The motor cortex has been shown to project into the 

subthalamic nucleus (STN), thus implying a system of 

unknown electrical parameters with the EEG as the input and 

the STN local field potential (LFP) as the output [2]. 

Furthermore, studies in preclinical models of Parkinson’s 

disease have shown increased correlation between 

neighboring neurons [3] and increased coherence in the 15-

30 Hz band between basal ganglia nuclei [4, 5]. 

To examine the connection strength between these 

disparate brain areas using MS-ARX, we simultaneously 

recorded voltage data from the motor cortex EEG and STN 

LFP of anesthetized normal rats and hemiparkinsonian (HP) 

rats. Parkinsonism was induced by the vendor (Charles 

River) by 6-hydroxydopamine injection as detailed 

elsewhere [6]. All procedures were approved by the 

Pennsylvania State University Institutional Animal Care and 

Use Committee. 

For EEG recording, animals were deeply anesthetized 

with urethane, with nominal initial dose 1.3 g/kg (i.p.) and 

additional doses given as needed to maintain surgical 

anesthesia.  Stainless steel screws were implanted above 

bregma and above motor cortex (AP +3.7 ± 1.0mm, ML 

+2.5), and the EEG signal recorded as the potential 

difference between these screws was subsequently filtered 

between 0.1 Hz - 500 Hz (3500, A-M Systems), amplified, 

and digitized at a final rate of 200 samples per second.  The 

LFP signal was taken from the tip of the tungsten 

microelectrode (1-2 MΩ, FHC Inc), filtered between 5 Hz – 

500 Hz, amplified, and digitized. 

Recordings were taken from 9 normal rats (37 distinct 

STN sites) and 8 HP rats (26 distinct STN sites). Electrode 

tracts were histologically confirmed.  

We used a maximum of 260 taps in our AIC structure 

selection step.  This maximum was empirically selected 
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Fig. 1. Block diagram of MS-ARX system-identification 

configuration. In general, the system (dotted box) is 

unknown and so the true output y(k) and measurement 

noise n(k) are unknown and only yn(k) is measurable. The 

multirate equivalence theorem stated by Nounou et al 

allows precomputation of the scaled wavelet ARX 

prediction blocks (dashed boxes), reducing computational 

complexity. 
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based on the observation that the peak frequencies in our 

data were usually between 0.8-1.3 Hz or higher, thus 

allowing at least one cycle period within the ARX filter 

length at scale zero.  The maximum wavelet decomposition 

level was 4. Only recordings with robust slow-wave activity 

were included in the analysis [7]. 

III. RESULTS 

Table 1 shows the MSEs at different scales.  The 

undecimated scale was the optimal scale for approximately 

half of the recordings.  The other recordings saw better ARX 

prediction performance at higher wavelet scales (more 

heavily-filtered wavelet approximations). 

The mean MSE at the optimum scale was significantly 

lower in the HP group compared to the normal group (Fig. 2, 

p < 0.05, rank-sum test).  Also, the ratio (computed for each 

individual recording) of the mean of the absolute value of the 

best-scale AR coefficients (αi) to the mean of the absolute 

value of the best-scale exogenous input coefficients (βm) was 

significantly lower in the HP group (Table 2, p < 0.05, rank-

sum test).  Figure 3 and 4 show samples of the wavelet 

decimation and MS-ARX predictions, illustrating the 

differences between scales. 

 

Table 1 – Mean MSE at different scales across all 

recordings.  Numbers in parentheses are the percent of 

neuronal recordings which selected that particular scale as 

optimum. 

Scale MSE (mean ± SEM) 

 Normal  HP 

j = 0 1.005 ± 0.015 (51%)  0.953 ± 0.015 (56%) 

j = 1 1.008 ± 0.014 (11%)  0.958 ± 0.014 (24%) 

j = 2 1.012 ± 0.014   (3%)  0.968 ± 0.014   (4%) 

j = 3 1.013 ± 0.012   (8%)  0.973 ± 0.012   (8%) 

j = 4 1.019 ± 0.010 (27%)  1.000 ± 0.010   (8%) 

 

 
 

Table 2 – Parameter summary for normal and 

hemiparkinsonian recordings.  Each row shows the mean (± 

SEM) absolute value of the parameter at the optimum scale 

for each recording (* denotes p < 0.05 rank-sum test between 

Normal and HP groups). 

Mean of Parameter: Normal HP 
AR coeff.s   0.21 ± 0.024  0.19 ± 0.025 

Exogenous input (X) coeff.s 0.083 ± 0.016  0.15 ± 0.033 

Ratio of AR to X coeff.s   6.4 ± 0.87    4.9 ± 1.26* 

Number of nonzero AR coeff.s 157.3 ± 18.5 177.8 ± 19.3 

Number of nonzero X coeff.s 156.3 ± 18.5 176.9 ± 19.3 

Best scale 1.49 ± 0.29 1.00 ± 0.27 

 

 

IV. DISCUSSION 

The MS-ARX technique showed improved prediction 

accuracy compared to the traditional ARX approach (which 

uses scale 0 only).  This makes sense because the MS-ARX 

approach uses cross-validation to automatically select the 

best tradeoff between smoothing and preservation of signal 

details. 

The results seen of decreased MSE and increased 

proportion of exogenous input weights also indicate that 

linear prediction of the STN LFP based on the cortical EEG 

is more accurate in the HP condition and is based more on 

cortical input.  This indicates a greater amount of similarity 

between the population-based cortical and STN electrical 

activity in the HP case, and fits with previous reports based 

on individual neuronal correlation and spectral coherence 

methods. 

In conclusion, the MS-ARX method is well-adapted to 

the high-level analysis of neural signals from different brain 

nuclei at multiple scales. 
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Fig. 2. Mean MSE across all recordings at their optimal 

scale (* denotes p < 0.05 rank-sum test between Normal 

and HP groups). 

Fig. 3. Sample EEG and LFP waveforms showing the 

original scale and three successive levels of scaled 

wavelet decimations 
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Fig. 4. A. Overlaid sample EEG input, LFP output, and the MS-

ARX optimal scale prediction (scale 3).  B. Overlaid LFP output 

and predictions from all scales. 
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