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Abstract— On-chip implementation of Hilbert-Huang trans-
form (HHT) has great impact to analyze the non-linear and
non-stationary biomedical signals on wearable or implantable
sensors for the real-time applications. Cubic spline interpolation
(CSI) consumes the most computation in HHT, and is the key
component for the HHT processor. In tradition, CSI in HHT
is usually performed after the collection of a large window of
signals, and the long latency violates the realtime requirement of
the applications. In this work, we propose to keep processing
the incoming signals on-line with small and overlapped data
windows without sacrificing the interpolation accuracy. 58%
multiplication and 73% division of CSI are saved after the
data reuse between the data windows.

I. INTRODUCTION

Most of biomedical signals, e.g. electroencephalogram
(EEG) and electrocardiogram (ECG), exhibit significant
complex behavior with strong non-linear and non-stationary
properties [1][2]. Fourier Transform works on a priori basis
of assumption that the processed signals are linear and sta-
tionary [3]. The difficulty of the wavelet analysis is its non-
adaptive nature [3]. Hilbert-Huang Transform (HHT), pro-
posed by Huang et al. [3], is an adaptive data analysis method
and provides a possible solution for non-linear and non-
stationary signal analysis. Recently, HHT has been widely
used for biomedical engineering, such as sleep analysis [4],
brain computer interface (BCI) [5], noise removing [6] and
seizure prediction [7].

The VLSI on-chip system is the current trend because
of the power and area constraints imposed by the wearable
or implantable devices. As front-end and wireless circuits
are acquirable, signal processors are needed to complete the
real-time applications. On-chip systems for some of the key
signal processing algorithms, such as finite impulse response
(FIR) filter, fast Fourier transform (FFT), discrete wavelet
transform (DWT), and so on., have been proposed [8][9][10].
HHT is a crucial work but its on-chip system has not been
implemented so far.

HHT is the combination of the empirical mode decompo-
sition (EMD) and the Hilbert spectral analysis. The key part
of the algorithm is the EMD method, in which cubic spline
interpolation (CSI) consumes the most computation. Due to
the computation need of the heavy sifting process in the
EMD, the algorithm is often used off-line through personal
computer (PC). The sequential flow and the high computation
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to solve the tridiagonal matrix algorithm (TDMA) for CSI
makes on-line EMD difficult. Therefore, an on-line interpo-
lation method with low computation is required for EMD
microprocessor.

In this paper, a cubic spline interpolation method with
overlapped window and data reuse is proposed to support
on-line HHT biomedical microprocessor with only negligible
penalty in accuracy. The remainder of this paper is organized
as follows. Section II briefly reviews the theory of the EMD
algorithm and the CSI algorithm which will be used in the
computation of the EMD algorithm. The design issues and
the proposed interpolation method are described in Section
III. The implementation results are shown in Section IV.
Finally, Section V describes the conclusion and the future
works.

II. ALGORITHM

The EMD method, proposed by Huang et al. [3], is the
fundamental part of the HHT. It uses the cubic spline in-
terpolation (CSI) algorithm. Before the interpolation method
for the on-line HHT, we will briefly review the EMD method
and the CSI algorithm in this section.

A. Empirical Mode Decomposition

The EMD method decomposes the complicated data set
into a finite and often small number of components. These
components are intrinsic mode functions (IMFs). An IMF
represents a generally simple oscillatory mode as a counter-
part to the simple harmonic function. By definition, an IMF
satisfies two conditions.

a) The number of extrema and the number of zero-
crossings must be either equal or differ at most by one in
the whole data set.

b) At any point, the mean value of the envelope defined by
the local maxima and the envelope defined by local minima
is zero.

Given a signal x(t), the sifting process of EMD can be
summarized in the following steps.

1) Identify the local maxima and minima of x(t).
2) Generate the upper envelope U(t) and the lower en-

velope L(t) via CSI among all the maxima and minima,
respectively.

3) Compute the average of the two envelopes. The average
is defined as m(t) = (U(t) + L(t))/2.

4) Subtract m(t) from the data to obtain an IMF candidate,
that is c(t) = x(t)−m(t).

5) Check if c(t) satisfies the defined properties of IMF.
If properties are satisfied, c(t) can be regarded as an IMF.
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Fig. 1. The flow chart shows the EMD sifting process. There are two main
loops-the component loop and the iteration loop as well as two parameters,
e.g. the window length W of the signal and the number of IMFs M in the
EMD algorithm.

If not, the step 1-4 should be repeated until the terminate
properties are fulfilled.

6) Evaluate the residue r(t) by separating the IMF c(t)
from original signal x(t) as r(t) = x(t)− c(t).

7) Take r(t) as input data and repeat step 1-6, and obtain
a number of IMFs until the properties of (a) and (b) are
fulfilled.

After EMD sifting process, the signals can be represented
as the sums of several IMFs from the high-frequency part to
the low-frequency part and the residue.

x(t) = r(t) +

n∑
i=1

ci(t), (1)

where n is the number of IMF components.
There are several termination criteria of IMFs. These

criteria lead to a common undesired feature that the de-
composition is sensitive to the local perturbation and to
the addition of new data. To solve the problem, Wu and
Huang [11] proposed to fix the sifting number for the
decomposition. The sifting number is 10 to guarantee the
stability and convergence of the resulting IMFs.

Fig. 1 shows the flow of EMD sifting process. There are
two main loops in each EMD sifting process - the component
loop and the iteration loop. There are two parameters in the
EMD algorithm, such as the window length W of the signal
and the number of IMFs M . In practice, these parameters
are set according to different applications and demands.
For example, the number of IMFs, usually used to analyze
EEG/ECG signals, is about two to five.

B. Cubic Spline Interpolation

CSI is applied to connect the maxima and the minima in
the EMD process. Suppose a set of n maxima (minima) is
denoted by m1, m2, ... and mn with sample numbers t1,
t2, ... and tn, piecewise third degree polynomial functions
are used to present the n − 1 intervals between n maxima
(minima). We can write the equations of these functions as
follows,

Mi(t) = ait
3 + bit

2 + cit+ di, (2)

where t ∈ [0, ti+1−ti] and i = 1, 2, ..., n−1. The third order
polynomial functions, called cubic splines, must satisfy three
constraints. mi, M

′

i and M
′′

i are continuous on the interval
[t1, tn].

Then, equations can be written as follow:
mi = Mi(0) = Mi−1(ti − ti−1)

M
′
i (0) = M

′
i−1(ti − ti−1)

M
′′
i (0) = M

′′
i−1(ti − ti−1).

(3)
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Fig. 2. The schedule of the TDMA demonstrates the data dependencies
on the forward sweep and the back substitution.

Assume that Si is the function’s second derivative, M
′′
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and hi is the sample number difference, ti+1 − ti, a tridiag-
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B1 C1 0 . . . 0 0
A2 B2 C2 . . . 0 0
0 A3 B3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . BN−1 CN−1

0 0 0 . . . AN BN





S2

S3

S4

...
SN

SN+1


=



D1

D2

D3

...
DN−1

DN


(4)

where
N = n − 2
Ai = hi for i = 2 ∼ N
Bi = 2(hi + hi+1) for i = 1 ∼ N
Ci = hi for i = 1 ∼ N − 1

Di = 6(
mi+2−mi+1

hi+1
− mi+1−mi

hi
) for i = 1 ∼ N.

(5)

The values of Si can be solved by the TDMA with two
steps. The first step consists of modifying the coefficients as
follows, denoting the new modified coefficients with primes

C
′
i =

{Ci
Bi

for i = 1
Ci

Bi−C
′
i−1Ai

for i = 2 ∼ N − 1 (6)

and

D
′
i =


Di
Bi

for i = 1

Di−D
′
i−1Ai

Bi−C
′
i−1Ai

for i = 2 ∼ N
(7)

This is the forward sweep. The solution is then obtained by
the back substitution:

Si =

{
D

′
i−1 for i = N + 1

D
′
i−1 − C

′
i−1Si+1 for i = N ∼ 2.

(8)

Fig. 2 shows the data dependencies on the forward sweep
and the back substitution. First, each of the modified coeffi-
cients, C

′

i and D
′

i, is generated iteratively. Then, Si can be
calculated after the forward sweep finishes. Si is computed
from SN+1 to S2 iteratively in back substitution.

The coefficients of piecewise polynomial functions can be
derived by the following equations.

ai =
Si+1−Si

6hi

bi =
Si
2

ci =
mi+1−mi

hi
− 2hiSi+hiSi+1

6

di = mi

(9)

To solve the coefficients of the splines, two additional spline
boundary conditions are required. The second derivatives of
the two boundary extrema, S1 and Sn are set to zeros. Fi-
nally, the interpolated samples in an interval can be computed
by substituting the corresponding t into (2). For example, t
are integers which ranges from 0 to t4−t3 in the 3rd interval
between extrema m3 and m4.

III. PROPOSED INTERPOLATION METHOD

A. On-line Interpolation with Overlapped Window

In general, off-line EMD processing is executed on the
signals with a large window length W . It ensures that there
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Fig. 3. The concept of on-line interpolation with overlapped windows.
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Fig. 4. The normalized root mean squared deviation (NRMSD) of IMFs
interpolated on the middle interval of different number n of extrema (n =
4, 6, 8, 10, 12, 14 and 16).

are enough extrema to compute CSI and produce meaningful
IMFs. However, data with the large window length results
in high latency on data collection. On-line EMD processing
is required on HHT hardware implementation. On-line EMD
processing means to calculate accurate results immediately
when new data is available. To have an on-line EMD, an
on-line CSI method is first required.

Nevertheless, the boundary intervals of the envelope might
have errors because of the assumptions on boundary condi-
tions of CSI. Due to the data dependencies of EMD, these
errors would propagate between IMFs and affects accuracy
of the IMF results. Thus, the results must be interpreted
cautiously by determining the window within which the
interpolated values are reliable. Data could be completed
through overlapping the reliable windows. Fig. 3 shows the
concept of on-line interpolation with overlapped windows.
When new data is available, the values of reliable window
are produced immediately to achieve on-line EMD. It is of
great merit to lower the window size W because the latency
will be decreased. While accuracy and computation loading
are primary design issues to implement HHT microprocessor,
the reliable window size and data reuse are applied to cope
with the two issues.

B. Determination of the Window Size

One strategy is to interpolate the intervals with smaller
window length W of data, that is, to execute CSI with fewer
extrema. Because the boundary intervals of the envelope
might have errors, therefore, only the middle spline for n
extrema CSI is adopted for interpolating the upper envelope
U(t) and the lower envelope L(t). However, larger n con-
tributes to larger latency because more time is needed to wait
for sufficient supporting extrema. To determine the optimal
value of n in terms of accuracy, we use the normalized root
mean squared deviation (NRMSD) to estimate the accuracy
of interpolation. We execute EMD process on a large window

(a) Interpolation Schedule Before Data Reuse

(b) Interpolation Schedule After Data Reuse
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Fig. 5. The concept of data reuse applied on the revised interpolation
method. The computation loading of the forward sweep reduces largely
through data reuse.

as the referenced results and assume that the IMF results at
the center of the large window are not affected by the end
effects. These IMF results will be compared with the ones
computed in the short window, centered in the large one. The
large window size and short window size are 32 seconds and
4 seconds rat EEG data with the sampling rate of 256sps.
The NRMSD is defined below:

NRMSD =
RMSD

cmax − cmin
, (10)

where

RMSD =

∑T
t=0 |c

′
(t)− c(t)|2

T
,

c
′
(t) is the IMF computed by CSI on the middle interval,

c(t) is the IMF using large interpolation method, T is the
number of points, and cmax and cmin are the maximum and
minimum values of c

′
(t).

Fig. 4 shows the trend of NRMSD testing on rat EEG
signals compared to CSI on the middle interval of different n
extrema. The error propagates from the boundary. Therefore,
as n increases, the total error is less significant and will
eventually decrease to ignorable level. Due to the error
propagation from previous IMFs to later IMFs and lower
energy of later IMFs, later IMFs have larger errors. In our
case, n = 8 is chosen, while the NRMSD is below 3.5%
on each IMF. The value of n changes according to different
biomedical signals.

C. Revised Interpolation Method with Data Reuse

To derive the middle spline, the original method for
solving eight-extrema CSI coefficients requires large com-
putational loading, as shown in Fig. 5(a). We decrease the
computational loading by reusing the coefficients in the
forward sweep. When a new extremum, mM , is detected,
only the forward sweep coefficients of last two extrema are
calculated. Then, previous forward sweep coefficients are
combined with the latest coefficients, as shown in Fig. 5(b).
Through data reuse, the computation times of multiplication
and division for the spline coefficient are reduced by 58%
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Fig. 7. The results of five IMFs and residue after empirical mode decomposition on the raw rat EEG signal. The signals with green line are the floating-point
results produced by the referenced results. The signals with blue lines are the fixed-point results produced the proposed interpolation method.
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and 73% respectively. Otherwise, the effect of boundary
propagation of one side is decreased as more forward data
is collected.

D. Proposed Interpolation Schedule
Fig. 6 illustrates the interpolation schedule. m1, m2, ...,

m9 are the extrema. When new extremum m8 is detected, the
middle interval between m4 and m5 can be generated by CSI
on the the eight extrema m1 to m8. When next extremum
m9 is detected, m1 to m9 are used to interpolate the interval
between m5 and m6.

IV. SIMULATION RESULTS
On-line EMD processing could be achieved based on the

proposed on-line interpolation method. When new data be-
come available, the corresponding upper and lower envelopes
can be interpolated immediately. The IMF and its residue in
the interval can be computed. The residue can then be used
to do the next EMD iteration.

Fig. 7 displays the comparison. The raw rat EEG signal
with the sampling rate of 256sps is decomposed into five
IMFs and the residue. The green signals on the left are the
floating-point referenced results, while the blue ones on the
right are the fixed-point results produced by the proposed
interpolation method. The NRMSD of each IMF result by
our approach is less than 3.5%.

V. CONCLUSION AND FUTURE WORKS

In this paper, an interpolation method with overlapped
windows and data reuse has been shown to yield on-line
HHT biomedical microprocessor. When new data is avail-
able, the IMF results are calculated immediately to support
real-time biomedical microprocessor. The penalty on accu-
racy is only less than 3.5%, and 58% multiplication and 73%
division computation reductions for the spline coefficients
are achieved by the proposed method. In the future, the
hardware implementation of on-line HHT processor will be
implemented based on the proposed method.
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