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Abstract—In this paper, we evaluate the performance of
simulated annealing (SA) and the genetic algorithm (GA) when
used for electroencephalographic (EEG) source localization.
The performance is evaluated on the variance of the estimated
localizations as a function of the optimization’s initialization
parameters and the signal-to-noise ratio (SNR). We use the
concentrated likelihood function (CLF) as objective function
and the Cramér-Rao bound (CRB) as a reference on the
performance. The CRB sets the lower limit on the variance of
our estimated values. Then, our simulations on realistic EEG
data show that both SA and GA are highly sensitive to noise,
but adjustments on their parameters for a fixed SNR value do
not improve performance significantly. Our results also confirm
that SA is more sensitive to noise and its performance may be
affected by correlated sources.

I. INTRODUCTION

Solution to the inverse problem in electroencephalography
(EEG) consists of finding the current distributions within
the brain using EEG measurements. Many times solving
the inverse problem involves an iterative solution of the
forward problem (i.e., computing the electric potentials over
the scalp given a current source), then it is important to have
efficient analytical and numerical solutions of the forward
problem in order to minimize the computational burden [1].
Furthermore, the optimization process may fall in the case
where the cost function to be minimized contains several
local minima around the neuroelectric sources which could
make difficult the estimation process.
Many metaheuristics algorithms for global optimization

have been used in the solution of the inverse problem, and
most of them report high accuracy on the estimation of multi-
ple dipoles [2] [3]. Some examples of such algorithms are the
simulated annealing (SA) algorithm [4], genetic algorithms
(GA) [5] [6], particle swarm optimization (PSO) [7], and
tabu search (TS). Nevertheless, a strict statistical study on
the variability of these results under realistic conditions has
not yet been performed, and the establishment of realistic
confidence intervals as a function of the parameter space of
the metaheuristic algorithms remains an open task. There-
fore, in this paper we propose to evaluate the performance
of some of these metaheuristics algorithms using the Cramér-
Rao bound (CRB).
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The CRB establishes a lower bound on the variance of any
unbiased estimator for a predefined set of parameters. The
CRB is independent of the algorithm used for the estimation
and it defines a universal performance limit among unbiased
estimators [8]. Therefore, the CRB serves as a reference to
analyze the variability of an estimation process as a function
of the parameters of the optimization algorithm.
In our case, we are interested in evaluating how much the

performance of the SA and GA is affected when changing
their initialization parameters. Such evaluation is performed
as a function of the signal-to-noise ratio (SNR), thus not only
ad-hoc conditions but also realistic scenarios are considered.
In Section II, we define the optimization problem in terms
of the concentrated likelihood function (CLF) and define its
CRB. In the same section, we briefly describe the SA and
GA. In Section III, we present numerical examples using
simulated EEG data to demonstrate the applicability of the
proposed methods. Section V discusses the results and future
work.

II. METHODS

In this section, we define the measurement model of the
EEG generated by multiple dipole sources and the CLF is
established as cost function. Later, the CRB is introduced,
as well as the SA and GA.

A. Concentrated Likelihood Function

Let  be the matrix of measurements for  = 1 2    
independent experiments obtained from an array of
 = 1 2     EEG sensors at  = 1 2      time
samples. These measurements are made in the presence of
additive noise  distributed as N (0 2) and uncorrelated
in time and space. Under these conditions, the measurement
model is given by

 = (θ)q() + (1)

where q is the dipole moment, θ in our case corresponds to
the dipole’s position (i.e., θ = r = [     ]

 ), and
(θ) is the array response matrix of size  × 3 where
the th row corresponds to the kernel vector. Such kernel
vector relates the electric potential at an observation point
with the current source, the position of theth electrode, and
the volume conductor’s geometry and electrical properties
(see [1], [9] for a more detailed description). In the case of
 distinct dipoles, equation (1) holds with q() and (θ)
substituted with q() = [q1() q2()     q()]

 , and
(θ) = [1(θ) 2(θ)     (θ)].
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Therefore, the CLF can be defined as [10]

 (θ) = tr{( −()−1)̂} (2)

where tr{·} is the trace operator, ̂ is a consistent estimate
of the covariance matrix, and  = (θ) for simplicity in
the notation. It can be shown that an unbiased estimate of θ
(denoted as θ̂) can be obtained by minimizing (2), which is
known as the maximum likelihood (ML) estimate [8].

B. Cramér-Rao Bound

The CRB is a theoretical lower limit on the variance that
provides a benchmark against which we can compare the
performance of any unbiased estimator. In our case, the CRB
is defined by [11]

(θ) = 2

"
X
=1

()⊥()

#−1
 (3)

where () is a block diagonal matrix of size 9 × 3 in
which the moments of the  dipoles are arranged,  is a
matrix ( × 9) containing the partial derivatives of the
desired parameters, ⊥ = −()−1 , and 2 is the
signal’s variance. For more details on the calculation of (3)
see [12].
Therefore, our goal is to evaluate the performance in

optimizing (2) when SA and GA are used. Hence, unbiased
estimates θ̂ will be obtained under different conditions, then
their variance will be compared against the CRB. In the
case of optimal performance, the variance of the SA and
GA estimates is expected to be close to the CRB.

C. Simulated annealing (SA)

SA is a stochastic simulation method originally proposed
in [13] which has proven useful in a wide range of complex
combinatorial optimization problems. The process of anneal-
ing is analogous to the process of the optimization, in which
the value of the cost function takes the role of the energy
of the system, and the global optimum corresponds to the
energy of the ground state of the system. In the SA algorithm,
choosing a suitable anneal schedule is very important in
order to ensure that the SA converges to a global optimum.
This includes the choice of an initial temperature () and a
temperature decrement rule. In this paper, we evaluate two
traditional scheduling strategies:

(a) Selection of initial temperature: the value of  af-
fects the trade off of the computational cost and the
possibility of finding a global optimum.  should be
high enough to melt the system at the beginning of the
annealing. However, choosing an overly high value will
consume too much computer time. In practice,  is
often determined by [15]

 =
∆̄

ln(−1)
 (4)

where ∆̄ is the average increase in the cost function
and  is a predetermined acceptance ratio.

(b) Temperature decrement rule: in order to avoid an im-
practically long time of computation, the temperature
decrement should not be too slow. However, if the
decrement is too fast, thermal equilibrium cannot be
reached at each temperature. For this reason, a usually
adopted decrement rule is the following [4]:

 = −1 (5)

where  is the -th temperature and   1 controls the
decrease in temperature.

For a more comprehensive description of SA, see [14].

D. Genetic Algorithm (GA)

GA is an iterative optimization technique inspired in the
mechanics of genetics and natural selection. A group of
candidate solutions, which are described as binary sequences
(chromosomes), is viewed as a generation of certain popu-
lation. Operations such as selection, crossover, and mutation
are applied upon these chromosomes to produce new gener-
ations with better fitness. In this paper, we evaluate the GA
taking into account the following criteria:
(a) Roulette wheel selection mechanism: in this case, GA

assigns to each individual a selection probability which
is directly proportional to its fitness. Then, the area of
a sector in a roulette wheel (from where the individuals
will be chosen) is set proportional to the fitness val-
ues. Finally, the selection of individuals is performed
by independent spins of the wheel and, since better
individuals have more space on the wheel, they will
have more chance to be chosen.

(b) Two point crossover mechanism: here, GA creates
crossover children of the given population using two
available parents and choosing two random points A
and B in its binary sequence. Then, the child will have
the genes of the first parent at the locations after A and
before B, and the genes of the second parent after B
and before A.

(c) Gaussian mutation mechanism: genes in an individual
are randomly interchanged using a Gaussian distribu-
tion.

(d) Hybrid algorithm: in many cases, combining GA with
another method can significantly enhance the effective-
ness of the GA [16]. In our case, we are interested in
evaluating a hybrid algorithm which combines GA and
constrained nonlinear optimization.

In addition to comparing the performance of all those vari-
ations of the GA, we evaluate the effect of different sizes
of the population. For a more detailed description of GA
see [17].

III. NUMERICAL EXAMPLES

We performed a series of numerical experiments for
simulated EEG data corresponding to one and two dipole
sources within a four-sphere head model [1]. In both cases,
the data was generated using an array of  = 37 sensors.
For the data produced by one dipole, the source was located
(in spherical coordinates) at [ = 05235  = −12  =
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0083] where  and  are the azimuth and the elevation
angles given in radians, respectively, and  is the eccentricity
in meters. For the case of two dipoles, they were located at
[ = 05235  = 06  = 0083] and [ = 05235  =
−06  = 0083] . The dipoles’ magnitudes were allowed
to change in time according to

() = 15−(
−60
8 )2 − 5−( −4017 )2 [ ·] (6a)

() = 13−(
−60
12 )2 − 3−( −4017 )2 [ ·] (6b)

() = 0 (6c)

i.e., q() = [() () ()] = q1() = q2(). Note
that, in the case of the experiments with two dipoles, this
assumption would simulate correlated sources. Finally, we
added uncorrelated random noise, distributed as N (0 2)
with different values of 2 in order to achieve mean values of
SNR = −2−1 02 06 dB.
Under these conditions, the estimates of the source lo-

calizations were calculated by minimizing (2) with  and
 being the parameters of interest, while  was kept fixed
to the surface of the sphere modeling the brain cortex
(i.e., θ = [ 0083] ). Then, SA and GA were used in
the optimization process and the influence of varying their
operational parameters was evaluated, as well as the effect of
different SNR values. The estimation process was repeated
 = 100 times for each SNR value with independent noise
realizations. Then, we computed the standard deviations
of those estimates (denoted as ̂  ̂  ̂ in Cartesian
coordinates), and compared them to the CRB square roots.
In the case of SA, the parameters we evaluated were 

and the temperature decrement rule. The initial point of the
search was considered as  = 0  = 0. We introduced
lower and upper bounds constrains into the parameters of
interest in all the cases. In two of the experiments, the SA
initial temperatures were  = 50 100 and the tempera-
ture decrement rule was computed as +1 = 095 for
 = 0 1 2   . In the third experiment, we used (4) with
 = 08 and ∆̄ was approximated from the mean value
of 20 representative examples. Then, the optimization was
performed using (5) with  = 085.
For the GA optimization, we tested its performance for

population sizes of 20 50 100 and 500 chromosomes in
the experiments corresponding to one dipole, while for two
dipoles we used lower and upper bounds constrains into the
values of  and  and a population size of 100 chromosomes.
Then, three experiments were performed: in the first one
we used a traditional process, i.e. used the genetic opera-
tors described in Section II-D. In the second, we added a
hybrid algorithm with a local constrained search based on
a nonlinear multivariate algorithm. In the third experiment,
we used the same selection and crossover operators as in
the traditional process but changed the mutation operator
by one which randomly generates directions that adapt as
a function of the last successful generation [18]. In all the
GA experiments, the individuals within the initial population
were generated randomly without restrictions.

IV. RESULTS AND DISCUSSION

The results of all our experimentation are shown in
Figures (1) and (2) for the case of estimating one dipole,
and Figures (3) and (4) for simultaneously estimating two
dipoles.
In all cases we note that, for high SNR, the standard

deviations of the estimates are close to the CRB square root
without significant differences introduced by the variations
in the operational parameters of the SA and GA algorithms.
In the case of GA, we did not find significant differences
between optimizing the CLF with a low population size
(20 chromosomes) in comparison to larger populations (500
chromosomes). In addition, the standard deviations were very
similar independently of the genetic operators used or if
hybridizing was applied for all population sizes.
Similar results were obtained in the case of SA, where

varying  or the decrement rule did not change the vari-
ances. However, in the example corresponding to estimating
two dipoles, we found that SA was more sensitive to changes
in  under all conditions of SNR. Nevertheless, our results
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Fig. 1. Standard deviation of ̂ for one dipole using SA with different
initialization parameters as a function of SNR.
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Fig. 2. Standard deviation of ̂ for one dipole as a function of SNR and
for different implementations of the GA.
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Fig. 3. Standard deviation of ̂ for two dipoles using SA with different
initialization parameters as a function of SNR.
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Fig. 4. Standard deviation of ̂ for two dipoles as a function of SNR and
for different implementations of the GA.

showed that in a two-dipole estimation SA benefits from
using a very high value of  like the one computed
using (4). However, this strategy makes SA less attractive
in comparison to GA as the computational cost increases.
In summary, GA and SA are effective in localizing one

dipole. GA is particularly efficient given that the population
size used in the experiments was rather small. Furthermore,
our results also showed that the hybrid GA with local
search was a suitable strategy. Finally, we noted that GA
outperforms SA in the case of two dipoles as SA seems to
be easily trapped in local minima, which is reflected by the
standard deviations of SA being relatively larger than those
obtained through GA and very different to those for the case
of estimating one dipole.

V. CONCLUSION

We presented a scheme to evaluate the performance of SA-
based and GA-based EEG source localization methods using
the CRB as reference. Our study showed that no significant
variations on the performance are introduced by changing
the selection of the operational parameters of the SA and

GA, while in general GA has a better performance. However,
both methods seem to be very sensitive to the presence of
noise, while SA also seems to be sensitive to the introduction
of correlated sources as seen in beamforming methods [19].
Our preliminary tests also showed that GA has the advantage
of being computationally less costly than SA. However, a
more strict evaluation of the computational times is required.
This evaluation will be part of the future work, as well as
a more intensive experimentation using real EEG data, and
the evaluation of other metaheuristic methods such as PSO
and differential evolution (DE).
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