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Abstract— Functional motor impairment due to Parkinson’s
disease and other movement disorders are currently assessed
with visual rating scales such as the Unified Parkinson’s Disease
Rating Scale (UPDRS). These methods rely on the subjective
judgment of a rater to assign scores representing the extent of
impairment while subjects perform prescribed activities. We de-
scribe a new model-based framework that uses statistical video
processing to automatically track movement during prescribed
activities. This approach has many advantages over traditional
clinical rating scales. It can completely characterize movement
during prescribed tasks over time objectively and precisely
using hardware that is inexpensive and readily available. We
demonstrate the potential of this framework with a simple
statistical model applied to a paced finger tapping test. This
technology could be deployed in a natural home environment
for frequent assessments. This technology could ultimately
improve both clinical practice and clinical trials.

I. INTRODUCTION

A precise and accurate assessment of movement disorders
is important for both clinical practice and clinical trials eval-
uating new therapies. In both cases, the impact of therapeutic
changes is important. This is a challenging problem because
for many movement disorders there is no directly biological
measure, or biomarker, of the state of the disease or severity
of functional impairment. In practice, the functional motor
impairment is assessed with a visual exam by a neurologist
or trained rater. In clinical trials, rating scales such as the
Unified Parkinson’s Disease Rating Scale (UPDRS) are used
[1]. These scales require the subjects to complete a series
of prescribed tasks which are observed by a rater. The rater
then assigns a score to each task, often on a 4 or 5 point
scale.

We propose a new framework for objectively assessing
movement disorders based on a model-based statistical video
processing algorithm. This type of objective measure has
many potential advantages over a visual assessment by a
rater. By eliminating the subjective judgment of the rater,
this approach may have greater precision, less variability
because it eliminates inter-rater and intra-rater variability,
and more accuracy because it eliminates rater bias. It may
also eliminate the cost normally required for raters to be
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trained, certified, and rate subjects. Increasingly, technologies
are being deployed for home assessment, which can reduce
cost and permit more frequent measurements which can be
used to more precisely track the progression of a disease
than infrequent visits to a clinical site required with rating
scales. This increase in accuracy and measurement frequency
could have a large impact on clinical trials and lead to
fewer subjects, shorter trials, and substantial cost savings.
This is potentially a low-cost approach because it does not
require any specialized hardware and leverages the economy
of scale that has driven down the cost of high-resolution web
cameras.

This paper describes a method for assessing one of these
tasks, finger tapping, with a model-based statistical video
processing algorithm. We demonstrate the potential of this
framework with a finger tapping test. This is an early and
sensitive indicator of motor impairment caused by Parkin-
son’s disease. This approach is novel because it is based on
a statistical model that incorporates domain knowledge in the
form of biomechanics and biodynamics, which we define as
knowledge about physiology of movement.

Another video based effort to evaluate tapping tests utilizes
the Virtual-Touchpad interface (VTP) [2]. The VTP is a
mobile interface that instructs patients to perform the test,
and includes a webcam to record the test, which can be
evaluated in real time for a 15 fps video. The video is
evaluated using contour algorithms to determine the type of
gesture being made by the subject’s hand (e.g. are the index
finger and thumb apart or touching). The speed of tapping
can be determined from this information. To score this type
of test raters are asked to consider multiple factors. The VTP
only considers the speed of tapping, while our method is able
to address all by using a model based approach.

II. ALGORITHM DESIGN

Finger tapping is one of the most sensitive tests in the 27-
part motor UPDRS exam, which is often used as the primary
endpoint in clinical trials. To determine the score assigned
to this test, the rater is instructed to consider the tapping
speed, tapping amplitude, number of hesitations and halts,
and decrease in amplitude over the duration of the test. Our
video tapping assessment is designed for the same test, but
precisely quantifies the angles of each joint of the finger over
the duration of the test. This permits us to precisely quantify
all of the characteristics listed above.

The algorithm is divided into four components: the physi-
cal recording and camera settings, a mathematical model that
relates the joint angles of interest to a video frame, a criterion
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for comparing the similarity of the model to each captured
frame, and an optimization algorithm for minimizing the
optimization criterion. Each of these components is described
in detail in the following sections.

A. Video Camera and Environmental Settings
The most important characteristics of the video camera

and environmental settings are sharpness of the image, frame
rate, color difference between the hand and background, and
masking of the fingers that were not of interest. During
finger tapping subjects are typically instructed to tap with as
much speed and amplitude as possible. For video processing
it is important that the frame rate is high and blurring
is minimized. This can be attained with good lighting to
minimize the exposure time for each frame. To accurately
compare the dichromatic hand model to an actual image of
a hand, it is best for the average RGB color values of the
hand and the background to be as different as possible. To
accomplish the goals of having a crisp image and a large
color difference, we used a black background that reflected
little light and we illuminated the hand with white LED
lights placed behind the camera. When it is not possible
to constrain the background and lighting to produce the
necessary difference in RGB color values, the video can be
processed in HSV color space as long as there is a significant
difference between the hue or saturation values of the hand
and the background. The videos were recorded with a low
enough exposure time so that little to no blurring could be
seen in a video of a 1 Hz passed tapping. A small filming
stage was created to provide a black background. The stage
included a section to mask the other three fingers. In this
study we used a Logitech (Fremont, CA) HD Pro Webcam
C910. The videos had a resolution of 1280 × 720, and the
frame rate was 30 fps.

B. Model Design
Our initial model consists of interconnected polygons to

represent the relevant portions of the finger, thumb, and other
parts of the hand. Three separate interconnected polygons
were used to represent each phalanx of the index finger. Two
additional polygons are used to represent the thumb, and
a final polygon represents the remainder of the hand. The
coordinates of each polygon forming the index finger can be
rotated using rotational matrices and translations to model
finger movement. In this example, the other polygons are
static since the hand and thumb are fixed for the duration
of the test. Thus, the state of the system and position of
the polygons is completely determined by the three angles
for each joint of the index finger, which we denote as θ1,n,
θ2,n, and θ3,n in order of nearest to farthest joints from the
hand for the nth frame. Figure 2 shows the joint angles and
indicates the direction of positive rotation. Collectively we
represent these as a vector

θn =
[
θ1,n θ2,n θ3,n

]T
(1)

where T represents the transpose operation. Figure 1 shows
an example of the modeled image with the joint angles set
to θn = 0◦.

Fig. 1. This figure shows the model with the knuckle, proximal, and distal
joint angles set to zero.

Fig. 2. This figure shows the model and demonstrates how the joint angles
are defined.

For a given set of joint angles, the locations of the poly-
gons is known. We have developed a fast, but straightforward
algorithm, to convert the polygons into a matrix representing
the pixelated RGB image with the same dimensions as the
original video frames. For the examples shown in this paper
the polygons are given a fixed color that was manually
matched to the skin color of the video. The background was
similarly selected in a manual fashion. However, it is possible
to make the skin and background colors parameters that are
concurrently estimated with the joint angles.

C. Optimization Criterion

For the sake of simplicity we used a statistical model of
each frame as our polygon model with additive Gaussian
noise,

fn(i, j, k) = pn(i, j, k; θn) + en(i, j, k) (2)

where i ∈ {1, 2, 3} represents the RGB color index, j
represents the row index, k represents the column index, n
represents the frame index, fn((i, j, k; θn) is the nth frame of
video, pn(i, j, k; θn) is the nth model frame, and en(i, j, k)
is the additive Gaussian noise with zero mean and unknown
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variance. We assume the noise between colors and pixels is
independent and identically distributed.

Under these conditions, the maximum likelihood estimator
is attained by minimizing the mean squared error (MSE),

ζ(θn) =
1

np

∑
i,j,k

[fn(i, j, k)− pn(i, j, k; θn)]2 (3)

where np is the total number of pixel RGB values in a single
frame. If the RGB values of the hand and the background
do not differ greatly, the MSE between the HSV values of
the pixels can be used.

D. Optimization Algorithm

There are a wide variety of optimization algorithms that
could be used to minimize the MSE. For this example, we
chose to use the cyclic coordinate method [3]. This is a
simple method that optimizes each angle individually with
all of the others fixed. Once all of the angles are optimized,
the method goes back to the first angle and repeats. Thus,
the cyclic coordinate method essentially consists of a series
of one dimensional optimizations that can be efficiently
solved with a variety of line search algorithms. We chose to
implement a Golden Section method line search to efficiently
locate the minimum [3]. For the example in the next section,
we stopped the line search when the difference between the
upper and lower bounds of estimated angles was 0.1 radians
(5.73◦) and we stopped the cyclic coordinate method after
four iterations.

Figure 4 shows three examples of the MSE versus the joint
angles. These examples clearly illustrate that local minima
are present, though at values near the global minima the error
functions are locally convex. The Golden Section method
searches for local minimum, but the local minimum in the
error plots correspond to angles that cause a phalanx to
completely overlap the hand or another phalanx, which is
physically infeasible. The allowable angles for the model
were limited to physically possible positions, eliminating the
risk of erroneous solutions caused by local minimum.

At 30 fps we do not expect the finger to change position
substantially from one frame to the next. Thus, for each
frame except for the first, we initialize the algorithm with
the finger location estimated from the previous frame. For
the first frame of video the proximal and distal joints angles
were set to 180◦. For subsequent frames the solution was
constrained to the following range of angles estimated in the
previous frame

θ`(n− 1)− 30◦ ≤ θ`(n) ≤ θ`(n) + 30◦ (4)

This knowledge of the finger dynamics could eventually be
incorporated into the state dynamics of a state space model of
the finger position, which could further improve the accuracy
of the estimate.

III. EXAMPLE TESTS

Figure 5 shows an example of the three estimated joint
angles versus time during a 0.8 Hz paced tapping test. All
of the information about the extent of impaired movement,
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Fig. 4. Example of the MSE versus the joint angles. The shaded region
shows joint angles that are not physically feasible.

including tapping rate, amplitude, hesitations, halts, and
decrement in amplitude, can easily be estimated from these
joint angles. There is noticeable noise in the distal joint, and
to a lesser extent the proximal joint. This is to be expected
because any error in the more proximal joint angles will
result in misplacement of the more distal phalanges, which
makes it more difficult to accurately estimate the distal joint
angles.

Figure 3 shows an example of the original frame and the
modeled frame after optimization. The original frame was
obtained during a paced tapping test and it illustrates that
clear, crisp images could be obtained even during movement
due to careful control of the recording environment. The ac-
curacy of the estimated joint angles is immediately apparent
through a visual comparison of the side-by-side images.
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(a) Original Frame (b) Modeled Frame

Fig. 3. Example of an original video frame and the modeled video frame after optimization. This frame is part of a recording that was obtained during
a paced tapping test.

0 2 4 6 8 10
−20

0

20

40

60

80

100

120

Time (sec)

Jo
in

t A
ng

le
s 

(D
eg

re
es

)

 

 

Knuckle
Proximal
Distal

Fig. 5. Estimated joint angles during a paced tapping as a function of
time.

IV. DISCUSSION AND SUMMARY

In this paper we have introduced a new framework for
the objective assessment of movement disorders. This has
all of the advantages of other technologies that have been
developed for this purpose that are essentially due to re-
placing the coarse subjective judgment of a rater with a
carefully designed objective instrument [4]–[8]. However,
this approach has several additional advantages. It does not
require expensive or custom developed software. Rather, it
simply requires a computer and web cam, both of which are
low cost and widely available. It allows subjects to perform
the task naturally in the same manner that was developed
for movement disorders. Perhaps most importantly, the small
size and ease of use makes it possible to perform the
assessment in a natural home environment.

We have demonstrated this framework with a finger tap-
ping test, which is a sensitive measure of functional motor
impairment in Parkinson’s disease. The model, optimization
criterion, and optimization algorithm were relatively simple
and could be improved in many ways. For example, a more
flexible and precise model of the hand could be used. Other
model parameters could be defined and jointly optimized. For
example, the thumb position, hand color, background color,
hand size, and hand position could be defined through ad-
ditional parameters. Similarly, a more accurate noise model

could be developed. A state space model could be defined to
more accurately represent the dynamics of human movement
and improve the estimation accuracy by using one of the
state space tracking algorithms such as the unscented Kalman
filter (UKF) or particle filters [9]. There are also a variety of
heuristics that could be applied to reduce the computational
requirements and reduce the overall processing duration.
However, even without the many possible improvements, this
relatively simple model was able to estimate the joint angles
accurately.
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