
  

  

Abstract—The development of ultra low power wireless 
sensors for customized wearable and implantable medical 
devices requires patient specific models for radio frequency 
simulation to understand wave propagation in the body. In 
practice, the creation of a patient specific whole-body model is 
difficult and time consuming to create. It is therefore necessary 
to establish a method for studying a population in a statistical 
manner. In this paper, we present a statistical shape model for 
the whole body for RF simulation. It is built from 10 male and 
10 female subjects of varying size and height. This model has 
the ability to instantiate a new surface mesh with the 
parameters allowed by the training set. This model would 
provide shapes of varying sizes for studies, without the 
requirement of obtaining subject specific whole body models. 
Results from finite-differences time-domain simulation are 
presented on the extreme shapes from the model and 
demonstrate the need for a full understanding of the range in 
body shapes. 

I. INTRODUCTION 
HE increase in minimally invasive therapies and image 
guided interventions requires images and models on a 

subject specific basis. Ultra low power wireless sensors, 
integrated within wearable and implantable medical devices 
[1], require an understanding of the mechanism of wave 
propagation and attenuation inside the human body. A 
prerequisite to the design of these sensors is this knowledge 
applied to a subject specific volume mesh. 

The finite-differences time-domain technique (FDTD) [2] 
has been used previously for radio frequency simulation. To 
handle complex problems and account for different radiation 
characteristics of the antenna in the radio channel, a parallel 
version was used [3]. With the difficulty in obtaining 
meshes, a clear understanding of how the extremes of body 
shape affect the energy reaching different parts of the body 
from a single power source is needed. 

 The difficulty lies in obtaining a whole body model on a 
subject specific basis. Previously these were built from 
magnetic resonance (MR) images [4] but this is not an 
imaging modality that is widely available. The use of range 
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finders [5] has also been investigated but this too requires a 
significant outlay to obtain the imaging equipment. To 
circumvent the need for a subject specific model, a method 
of understanding the range of shapes from a population is 
required. 

In this paper, we introduce a whole body statistical shape 
model applicable to a number of applications, including 
radio frequency simulation. The model is built from a total of 
20 subjects, 10 male and 10 female, and is capable of 
instantiating unseen shapes allowed by the training set. This 
model would assist with the understanding of the shape space 
of the population. We present the results from FDTD 
simulations of the extremes of shapes as derived from the 
model. 

 

II. METHOD 

A. MR Data Acquisition 
The subjects were imaged in a 1.5T Siemens Avanto MR 
scanner with each scan taking approximately 45 minutes. 
Data was collected from 20 normal subjects (10 male and 10 
female). A balanced steady state free precession (trueFISP) 
imaging protocol was used (TR = 382ms, TE = 1.79ms, slice 
thickness = 10mm, in-plane resolution = 1.6mm×1.6mm). 
Ethical approval for this data collection was obtained from 
the St Mary’s Committee. 

Imaging in this scanner requires the volume of interest to 
be in the centre of the bore and to overcome this, the images 
of the body were acquired section by section, with the 
scanner bed moved after each acquisition. 30 cm imaging 
volumes were acquired and about 7-8 volumes were required 
per subject, depending on their height. To overcome the 
limits of the field of view in the imaging protocol, some 
subjects required twice as many scans to cover both the left 
and right sides of their bodies. 

B. Whole Model Building 
An in-house program based on active contours [6] for semi-
automatic segmentation of DICOM image files was used to 
extract the surface contours of the body from the MR image 
files. The contours were then aligned semi-automatically and 
meshed using the marching cubes algorithm [7]. 

Post processing of the whole body meshes was performed 
in MeshLab [8]. The hands and feet of the subjects were the 
most difficult to visualize and due to their inconsistent poses, 
these were removed from the surface meshes. 
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C. Statistical Shape Modelling 
To build a statistical shape model, a set of shapes with point 
correspondence is first required. To achieve correspondence 
of points between the data set, we used a technique based on 
the work by Allen et al. [5]. 

Correspondence was achieved through the use of manual 
landmarks placed on the bodies and the alignment and 
optimisation using these markers.  

The objective function to be minimized was 

p s m
f F F Fα β γ= + +  

where α , β and γ  are weights set to 0, 10, and 10, and 10, 
1, and 1, for the two optimization steps, respectively. 

p
F  is 

the point data error, 
s
F  is the smoothness error and 

m
F is the 

marker points error. The optimization was performed with L-
BFGS-B (Limited memory Broyden-Fletcher-Goldfarb-
Shanno with Box constraints). The number of steps used in 
the paper was reduced to two optimizations, rather than four 
in the original paper. Any points that were erroneously 
mapped were projected to the closest point on the surface of 
the original mesh, reducing the optimization time 
significantly. 

Principal Components Analysis (PCA) was applied to the 
training set to reduce the dimensionality of the space. 

 
 

 
 
Fig. 1. MR images from one subject (a) knees, (b) thighs, (c) the 
pelvis, (d) the waist with the kidneys visible, (e) the chest with 
heart visible and (f) the head. This subject required two scans to 
cover the left and right sides of his body. 

 
 

D. Radio Frequency Simulation 
3D FDTD simulations were carried out using a uniform grid 
with cell size with cell size x y zΔ = Δ = Δ = 4mm and 

time step tΔ = 7.69ps to satisfy the stability criterion. A 
ten-cell Berenger’s perfect matched layer is used to truncate 
the simulation domain [9]. The FDTD computational 
domain, required for accurate modeling of the spherical 
black hole, is equal to (110 cells = 44 cm, 186 cells = 74.4 
cm, 530 cells = 212 cm). It is divided along the z-axis to 53 
sub-domains, where individual processors solve the parallel 
FDTD update equations. A large amount of memory is 
required for every simulation, roughly 10 Gb of RAM, which 
is also distributed between the computing nodes. Each 
simulation lasts approximately 2 h (50,000 time steps), until 
the steady state is reached and the field values no longer 
evolve significantly with time. 

As the dimensions of practical antennas are electrically 
small, it is considered a safe assumption to represent them 
using a single-cell point source and to excite the electric field 
component along the x, y and z axes. In a 3D FDTD, such a 
source has a dipole-like radiation pattern. 

For the homogeneous human meshes from the statistical 
shape model, a permittivity of ε = 52.791 and conductivity of 
σ = 1.705 are used. The source was placed at the navel of 
each subject and the amount of energy at the ears, wrists and 
ankles was examined. 
 

III. RESULTS 
 
MR images from one subject are shown in Figure 1, with 
examples from different parts of the body. The subject who 
was imaged required two scans to cover the width of his 
body; this was found to be the case with most of the subjects 
scanned.  

The first three modes of variation from the PCA of the 
model are shown in Figure 2. In the first mode of variation, 
the height of the subjects, from the tallest male to the shortest 
female, is shown. The second mode also shows some of the 
height variation. The range of the size of the subjects is 
clearly shown in the third mode of variation. A closer 
examination of the chest region of the modes of variation is 
shown in Fig. 3. The statistical shape model clearly 
encompasses the entire range displayed by the small 
population. The compactness of the model is shown in Fig. 
4.  

The mean and extremes allowed by the training set are 
shown in Fig. 5 and the results of the initial FDTD 
simulations on these shapes are in Fig. 6 and Fig.7. Due to 
the height of the tallest shape, less energy reached the 
extremities than the shortest or mean shapes. In the same 
manner, more energy gets to the extremities even near the 
wrist of the thinnest shape than the fattest.  
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Fig. 2. The first three modes of variation from the whole body 
model. 

IV. DISCUSSION AND CONCLUSION 
This work constitutes a first step into the examination of 
whole body models and RF simulation for sensor design. A 
better understanding of the signal attenuation in the body can 
be achieved with a more accurate tissue representation of the 
body; currently, only a homogeneous tissue model is used for 
the entire body. Research into the issue with mesh overlap 
when examining the modes of variation in statistical shape 
models is still required. With meshes such as that of the 
whole body, the difference in poses between subjects is 
usually picked up in one of the modes of variation and 
examination of that mode can result in the limbs overlapping 
the torso.  
 

 
 
Fig. 3. A closer look at the chest area of the modes of variation: (a) 
the mean shape and the extremes of (b) the first mode, (c) the 
second mode and (d) the third mode of variation. 

 
 

 
Fig. 4. The variance of each mode of variation of the model, 
highlighting its compactness.  
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Fig. 5. Example instantiated extreme shapes using the whole body 
model: (a) the mean shape, (b) the fattest shape, (c) the thinnest 
shape, (d) the tallest and (e) the shortest. 

 

 
 

 
Fig. 6. The electric field distributions for the mean and extreme 
shapes from the statistical shape model: (a) the mean shape and (b) 
tallest, (c) shortest, (d) fattest, and (e) thinnest shapes. 
 

The mesh instantiations are also suitable for physical 
based modeling, such as finite element analysis. Should 
tetrahedral meshes be required, the surface mesh instantiated 
from the SSM can be converted with Tetgen [10]. 

To conclude, we have developed a whole body statistical 
shape model to study the shape variation across a training set 
of 10 male and 10 female subjects. Shape instances allowed 
by the training set can be used for RF simulation and we 
have demonstrated FDTD simulations using the mean and 
four extreme shapes, highlighting the need for a full 
understanding of the range in body shapes. 

                

                    
Fig. 7. The side view of electric field distributions from source 
plane for the mean and extreme shapes from the statistical shape 
model: (a) the mean shape and (b) tallest, (c) shortest, (d) fattest, 
and (e) thinnest shapes. Each shape faces to the left. 
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