
  

  

Abstract— The goal of the present article is to compare 
different classifiers using multi-modal data analysis in a binary 
self-paced BCI. Individual classifiers were applied to multi-
modal neuronal data which was projected to a low dimensional 
space of latent variables using the Iterative N-way Partial Least 
Squares algorithm. To create a multi-way feature array, 
electrocorticograms (ECoG) recorded from animal brains were 
mapped to the spatial-temporal-frequency space using 
continuous wavelet transformation. To compare the classifiers 
BCI experiments were simulated. For this purpose we used 9 
recordings from behavioral experiments previously recorded in 
rats free to move in a nature like environment. 

Index Terms— Multi-way analysis, tensor factorization, 
classification, wavelet transform, brain-computer interface 
(BCI), self-paced. 

I. INTRODUCTION 
ased on neuronal activity recordings of the brain, Brain 
Computer Interface (BCI) aims to provide an alternative 

non-muscular communication pathway to send commands to 
the external world in individuals suffering from severe 
motor disabilities. Over the last decades several approaches 
and methods have been developed to improve neuronal 
signal decoding. Among others, recently multi-way analysis 
was considered as an effective tool for neuronal signal 
processing. Thanks to this approach data from several 
domains (e.g. space, frequency and time) can be treated 
simultaneously. In previous studies from our laboratory [1] 
multi-way analysis was applied to develop and implement a 
binary self-paced BCI designed to function in animals (rats) 
freely moving in a nature like environment. As opposed to 
the cue-paced systems, when the subject waits for the 
external cue that drives interaction, no stimulus is used by 
the self-paced BCI. The subject controls it at its own 
intention which is more adapted to the real-life applications. 
During the last years an increasing number of papers started 
to apply self-paced BCI paradigms [2]–[6]. However, the 
BCI performance reported in these articles is still not suited 
for practical application, in particular, because of high level 
of false system activation [4]. Moreover, results were 
obtained by the analysis of short recordings of several 
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minutes. Variety of experimental paradigms and evaluation 
criteria [2], [4], [5], [7] makes complicated comparison of 
performances of self-paced BCI systems. 

Series of long term BCI experiments (up to one hour 
duration) in freely moving animals were recently carried out 
in our laboratory [1]. Neuronal activity was monitored and 
recorded continuously using surface electrodes placed on the 
cortex of the animal (ECoG). To form a tensor of 
observation we map ECoG recordings to the spatial-
temporal-frequency space using continuous wavelet 
transform (CWT). Despite of relative computational 
complexity, this method was chosen because of its high 
frequency resolution and absence of limitation in the 
temporal resolution in the higher frequencies [8]. Applying 
the N-way Partial Least Squares (NPLS) approach [9] a 
regression model predicting the intentional control was 
created. The NPLS is a statistical method for linear 
modeling. It corresponds to the generalization of ordinary 
PLS for tensor input/output variables. In comparison to other 
tensor-based methods that were recently applied in BCI 
studies [10]–[12] the NPLS involves class information 
performing tensor decomposition which significantly 
increases the efficiency of modeling. While the NPLS works 
without any prior knowledge, it can be efficiently applied to 
automatically identify models aiming to predict BCI events 
from recordings of neuronal brain activity. The main 
disadvantage of the generic NPLS is its significant memory 
consumption. To overcome this problem, recently the 
Iterative Multi-way Partial Least Squares (INPLS) [1] and 
the Recursive Multi-way Partial Least Squares (RNPLS) 
[13] were invented. 

The NPLS algorithm is based on the data projection to the 
low dimensional feature space (space of latent variables), 
with further construction of linear regression. The binary 
BCI leads to the problem of two class discrimination. 
Although the PLS algorithm (as well as the NPLS and its 
derivations) was not inherently designed for classification, it 
is widely applied to solve this problem [14]. In particular in 
the studies [1], [15], and [16] NPLS linear regression was 
applied for classification using binary output variables. 
Otherwise PLS was used as a dimensionality reduction tool 
and coupled with different classifiers in the space of latent 
variables (for more details see [14]). The present paper has 
two main goals. The first one is to study the efficiency of 
different classifiers in the space of INPLS latent variables in 
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the context of the binary self-paced BCI. As the second goal 
several mother wavelets were compared for their efficiency. 
To achieve these goals recordings from several series of long 
term experiments in rats freely moving in a nature like 
environment were used. 

II. DATA DESCRIPTION 
Data was recorded by a neurophysiology team at 
CLINATEC/LETI/CEA, FRANCE, as described in details in 
[1]. The experiment was based on a simple reward task. A 
rat freely moving in a cage had to push a pedal to activate a 
food dispenser. The rat was trained to press the pedal 
without any clue or other conditioning stimulus. During a set 
of experiments ECoG signals from 14 surface electrodes 
implanted over the cortex of the rat were recorded. In 
addition the signal from the pedal was recorded 
simultaneously. The ECoG signals were recorded at 
sampling rates of 6.5 kHz or 13 kHz using Biomea system 
Biologic, Grenoble, France. Signals were sampled down to 
1.3 kHz and band-pass filtered ]500;5.0[ Hz. The Common 
Average Reference (CAR) filter was applied to the signal, 
i.e., an average signal of all the electrodes was subtracted to 
exclude a “common source”. Two series of experiments 
lasting from 10 minutes up to 1 hour were carried out in the 
same animal in July 2009 (4 recordings), and in October 
2009 (5 recordings). For further details see [1]. 

III. METHODS 

A. Tensor representation of ECoG data 
The BCI feature tensor was formed from the epochs 
extracted form the ECoG signals mapped to the spatial-
temporal-frequency space using CWT (see Fig. 1). For each 
epoch j  (determined by its final moment t ), electrode c , 
frequency f  and time shift τ , elements cfjx ,,,τ  of the tensor 
X  are calculated as norm of CWT of ECoG signal. 
Frequency band ]300,10[ Hz with step 2=fδ Hz and sliding 
windows ],[ tt τΔ− , 2=Δτ sec with step 04.0=δτ sec were 
used for all electrodes. 

 
Fig.1. Multi-channel ECoG recording mapped by continuous wavelet 
transform (CWT) to the temporal-frequency-spatial feature space. 
 

Upper bound of frequency band is conditioned by 
limitation of wireless data acquisition system which is under 
development in CLINATEC/LETI/CEA [17]. The resulting 
dimension of a point was )1451146( ×× . The binary 

dependent variable was set to one, 1=jy  if the pedal was 
pressed at the moment t , and 0=jy , otherwise. 

B. Wavelet optimization 
To choose the most appropriate basis of decomposition, 
several mother wavelets ψ  were compared: Meyer, Morlet, 
Symlet ‘7’ and ‘8’, 2nd and 10th orders Debauchies, Coiflets 
‘5’, and Haar. Their evaluations were made according to the 
maximum level of correlation between the absolute value of 
the wavelet’s coefficients ),( sC τψ  over scale factors s  and 
time shift sec2≤τ , and the signal of the pedal y : 

))}(|,),((|corr{max , tystCR ts τψτψ −= , where s  corresponds to 
the frequencies of the band ]300,10[ Hz and }1,0{)( ∈ty  
represents the position of the pedal at the moment t . 

C. Formation of training and test sets 
The training data, namely the tensor X , representing 
electrical brain activity, and the vector y  indicating the 
position of the pedal, were calculated using the first 10 
minutes of the recording made in July 2009. Then this entire 
recording and 8 others were used to validate the classifiers. 
The total number of points in the training dataset was equal 
to 1400, including 400 event-related points (formed as 
random replication of 73 event situations from the training 
recording) and 1000 randomly selected non-event points. 

D. Projection to low dimensional space 
Because of the huge size of the tensor X  the INPLS 
algorithm was employed to project data to the low 
dimensional feature space. The number of factors 
(projectors) was set to 8 by ten-fold cross validation. The 
resulting latent variables were used for classification. 

E. Classification algorithms 
Different types of classification methods have been applied 
in BCI tasks [18]. Several linear and non-linear classifiers 
widely used in BCI research were chosen in this study. 
Then, they were compared using a given set of INPLS 
features. 

Linear classifiers: Linear Discriminant Analysis (Fisher’s 
LDA), INPLS regression with binarization.  

The INPLS algorithm generates a linear regression model 
in the latent variables space to predict ŷ  corresponding to 
the output variable y . For the binarization of ŷ  a scalar 
threshold was found using the training set according to the 
criterion of efficiency (described below). 

Non-linear classifiers: Quadratic Discriminant Analysis, 
Logistic Regression, Kernel Support Vector Machine (radial 
basis function was chosen as a kernel, 1=σ ). 

Training of all classifiers was carried out using the 
training data set. Then the efficiency of the classifiers in the 
BCI task was estimated by simulation of BCI experiments 
using the test recordings. 
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F. Simulation of BCI experiments 
To study generalization ability of all classifiers, simulating 
BCI experiments were carried out. Binary discriminators 
were applied offline to 9 recordings (lasting from 10 minutes 
to 1 hour). Decision (event or non-event) was making with 
Decision Rate 2Hz, i.e., every 0.5 sec. The system was 
blocked for 5 seconds after event detection to prevent 
multiple activations. Follow to [4] the real event was treated 
as detected if the time interval between the event and its 
detection did not exceed 1.5 seconds. 

G. Performance evaluation 
The performance of binary BCI is characterized by True 
Positives (TP) representing the amount of correctly detected 
events, False Positives (FP), representing the amount of 
non-event situations detected as events, True Negatives 
(TN), representing correctly detected non-events, and False 
Negatives (FN) representing the amount of missed events. 
On the basis of this characteristics, the statistics True 
Positives Rate (TPR = TP/(TP+FN)), and False Positives 
Rate (FPR = FP/(FP+TN)) are calculated. TPR characterizes 
the percentage of events which were successfully detected 
by the BCI system. FPR is the standard statistics to 
characterize the relative amount of false activation. Note that 
FPR statistics depend on decision rate and class ratio. It 
should be considered comparing BCI systems. Self-paced 
BCI involves a classification problem with highly 
unbalanced classes. To better characterize false activation of 
the self-paced BCI system, an additional characteristics, 
such as, Positive Predictive Value (PPV = TP/(TP+FP)), 
could be applied [19]. It reflects the ratio of correctly 
detected events to the amount of detections. To create a 
single value characterizing performance of the self-paced 
BCI system, in the present study an average value of TPR 
and PPV was used (Overall Performance (OP) = 
(TPR+PPV)/2). This statistic was introduced because the 
commonly used standard Classification Accuracy (ACC = 
(TP+TN)/(TP+TN+FP+FN)) or the Error Rate (ERR = 1-
ACC) [19] fail to efficiently characterize performance of 
classifiers for highly unbalanced classes. Maximization of 
OP provided the set of parameters (thresholds of detection) 
for all classifiers. 

IV. RESULTS 
Mother wavelets were compared using 4 files representing 
the first series of experiments. The comparison of mother 

wavelets shows that second order Debauchies and Haar lead 
to a relatively low level of correlation, whereas the 
performance of all other wavelets is comparable. Meyer 
wavelet was chosen for the present study as mother function, 
due to its computational efficiency [8]. Results are shown in 
Fig. 2. 

Table 1 summarizes the results of comparison of 
classifiers. For this purpose simulations of the self-paced 
BCI experiments were carried out using test recordings. BCI 
simulations show that the quadratic classifier applied to 
INPLS latent variables is the most efficient. Nevertheless, 
this method does not significantly outperform linear 
regression with binarization threshold. The values of Overall 
Performance for 9 test data sets and all classifiers are shown 
in Fig. 3. 

V. DISCUSSION 
Over the last decades numerous approaches and methods 
have been proposed for BCI. So far most BCI experiments 
were done with cue-paced (synchronized) approaches, self-
paced BCIs seems to be much more suited for real-life 
application. Recent publications reported self-paced BCIs of 
good performance [15], [20]. Nevertheless, these self-paced 
BCI experiments were still carried out under highly 
restricted conditions which are not satisfactory for clinical 
applications. Our study is based on long term experiments 
(up to one hour) performed in freely moving animals in a 
noisy environment. In average feeding was taking about 
40% of the experiment session, the rest of the time was spent 
by the rat in spontaneous activities. During simulation of 
online BCI experiments still 86% of correct detection of 
control intentions was achieved with only a moderate rate of 
false activation. These results were obtained using multi-
modal neuronal signal processing improving extraction of 
useful information from the data. The projection to the low 
dimensional space with INPLS allowed the application of 
different classifiers which improved the BCI effectiveness. 

Finally, a set of real-time experiments demonstrated the 
computational efficiency sufficient for on-line applications. 
The processing time of 0.5 sec buffer is not surpassing 0.1 
sec (Intel Dual Core, 3.16 GHz; RAM 3.25 Gb). In parallel 
several mother wavelets were compared for the temporal-
frequency data representation. This study does not reveal the 
essential difference between wavelet generative functions. 

TABLE I 
PERFORMANCE OF SIMULATED SELF-PACED BCI EXPERIMENTS WITH DIFFERENT CLASSIFIERS IN SPACE OF LATENT VARIABLES 

  TPR (%) PPV (%) FPR (%) ERR (%) OP (%) FP min-1

INPLS 80 ± 14 87 ± 9 0,36 ± 0,16 0,91 ± 0,33 84 ± 11 0,42 ± 0,19 
LDA 77 ± 13 81 ± 13 0,55 ± 0,21 1,21 ± 0,37 79 ± 13 0,64 ± 0,25 
QDA 85 ± 13 86 ± 9 0,45 ± 0,29 0,85 ± 0,31 85 ± 10 0,52 ± 0,34 
KSVM 76 ± 12 81 ± 13 0,57 ± 0,43 1,31 ± 0,43 79 ± 11 0,67 ± 0,50 
Logit 83 ± 14 83 ± 11 0,52 ± 0,27 0,97 ± 0,31 83 ± 12 0,61 ± 0,31 
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Fig. 2. Maximum of correlation between wavelet coefficients and the signal 
of the pedal. 
 

 
Fig. 3. Overall performance (OP) for series of simulated self-paced BCI 
experiments using different classifiers in space of INPLS latent variables. 
Black circles represent the average value over all the experiments. 
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