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Abstract— The estimation of current distributions from elec-
troencephalographic recordings poses an inverse problem,
which can approximately be solved by including dynamical
models as spatio-temporal constraints onto the solution. In this
paper, we consider the electrocardiography source localization
task, where a specific structure for the dynamical model of
current distribution is directly obtained from the data by
fitting multivariate autoregressive models to electroencephalo-
graphic time series. Whereas previous approaches consider an
approximation of the internal connectivity of the sources, the
proposed methodology takes into account a realistic structure
of the model estimated from the data, such that it becomes
possible to obtain improved inverse solutions. The performance
of the new method is demonstrated by application to simulated
electroencephalographic data over several signal to noise ratios,
where the source localization task is evaluated by using the
localization error and the data fit error. Finally, it is shown
that estimating MVAR models makes possible to obtain inverse
solutions of considerably improved quality, as compared to the
usual instantaneous inverse solutions, even if the regularized
inverse of Tikhonov is used.

I. INTRODUCTION

Estimation of the brain activity from electroencephalo-

graphic (EEG) measurements is known to be an ill-posed

inverse problem (infinite number of different current sources

arise to identical scalp recordings) that cannot be solved

without some kind of regularization. Electroencephalo-

graphic Source Localization (ESL) is a technique that con-

sists in inferring the internal configuration of the brain which

could explain the electromagnetic activity reflected in the

scalp, i.e., the inverse problem in EEG. In this regard,

multivariate autoregressive model (MVAR) can be proposed

to carry out the ESL task, because of the benefits presented

by a parametric model such as the accuracy and the ability

to track the time dynamics of a variable [1].

Nonetheless, the description obtained from electrodes with

MVAR parameters does not correspond to the same activity

within the brain, so these models are not sufficient to address

or describe all the internal dynamics of the sources [2].

For this reason, it is mandatory to improve the represen-

tation of the internal connectivity of the sources estimated

directly from data. In this way, one technique for solving

the EEG inverse problem is Kalman filtering, because it

provides a natural framework for incorporating dynamic EEG

constraints in source localization.

The non-uniqueness of the inverse problem implies that

assumptions on the source model, as well as anatomical

and physiological. Therefore, a priori knowledge about the

source region should be taken into account to obtain a unique

solution, i.e. static case [3]. In order to overcome such a

drawback, a new method has been recently proposed that

takes into account the dynamics of EEG based on physio-

logical linear or nonlinear models as a dynamic constraint

to improve the solution of the inverse problem [4], [5].

However, the resulting dynamic inverse problem solution

can not describe real interaction among sources. Therefore,

in order to improve the dynamic solution, it is necessary a

realistic dynamical model that describes the neuronal activity

using for example autoregressive models.

This paper presents a methodology based on MVAR model

with time invariant parameters, that can be used jointly with

the Kalman filter to estimate the source dynamics, wich is

implemented on a realistic model of brain computed with the

boundary element method (BEM). The performance of the

technique is demonstrated by application to simulated EEG

signals for different levels of noise where the source local-

ization task is evaluated using the localization error and the

data fit error. Finally it is shown that despite employing the

regularized pseudo inverse of Tikhonov, MVAR parameters

provide sufficient information to achieve a precise location.

II. MATERIALS AND METHODS

A. Dynamic MVAR Modeling

Consider a measured EEG signal y[k] =

[y1[k], y2[k] · · · yn[k]]
T
, y ∈ R

n×1; where n is the

number of EEG channels at time instant k. It is possible

to represent the time series y[k] through a multivariate

dynamical model defined as:

y[k] =

p
∑

i=1

Aiy[k − i] + η[k]

= A1y[k − 1] + · · ·+Apy[k − p] + η[k] (1)

where Ai ∈ R
n×n, i = 1, . . . , p, represents the MVAR

parameter matrices, vector η[k] ∼ N (0, Cη) represents the

non-modeled features of the system, i.e. observation noise,

with covariance matrix Cη ∈ R
n×n. In this study, the

parameter matrices associated with the dynamic behavior

(see (1)) are to be estimated directly from the EEG signals.

The relation between the EEG and the neural activity into

the brain can be defined as follows:

y[k] = Mx[k] + η[k] (2)

where x[k] ∈ R
3m×1 is the current density associated with

the neuronal activity being m the number of distributed

sources inside the brain. Besides, the lead field matrix M ∈
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R
n×3m relates the current density inside the brain with

the EEG measurements y[k] and can be computed using

Maxwell equations for a specific head model.

Additionally, it is possible to assume that the dynamic

behavior associated with x[k] is similar to the one presented

in y[k]. Therefore, applying the relation (2) in Eq. (1), the

MVAR model for x[k] is reformulated as:

Mx[k] =

p
∑

i=1

AiMx[k − i] (3)

Regularized inverse of M defined as M−1 ∈ R
3m×n can

be found by Tikhonov method as follows

M−1 =
(

MTM + λ2I
)−1

MT (4)

where the regularization parameter λ is chosen using meth-

ods of parameter selection, by example the L-curve approach

[6]. However, when M is ill-conditioned, this approach can

lead to a significant decrease in numerical stability of the

inverse. Instead, QR factorization is used in the Tikhonov

regularization method of Eq. (4) to obtain solutions having

better numerical stability [7].

Using the regularized inverse, Eq. (3) is reformulated as:

x[k] =

p
∑

i=1

M−1AiMx[k − i] + ε[k]

and defining the parameters matrices Fi = M−1AiM , and

being ε[k] ∈ R
3m×1 an additive random variable defined as

ε[k] ∼ N (0,M−1CηM). As a result, the linear dynamic

model associated with the neural activity is defined as:

x[k] =

p
∑

i=1

Fix[k − i] + ε[k] (5)

Consequently, a dynamic forward problem for EEG sim-

ulation can be formulated using two equations: a discrete

time measurement equation as defined in (2) and the dynamic

state space equation proposed in (5). The advantage of this

approach is that the dynamical model is estimated directly

from the measured EEG signals y[k], and is related through

M with a model for neural activity x[k]. Equations (2) and

(5) can be reformulated as a first order model, as follows:
{

z[k] = Fz[k − 1] +Bε[k]

y[k] = Mez[k − 1] + η[k]
(6)

where z[k− 1] = [x[k− 1]T,x[k− 2]T, · · · ,x[k+ p− 1]T]T,

B = [I, 0, · · · , 0]T,Me = [M ,0, · · · ,0] and

F =













F1 F2 · · · Fp

I 0 · · · 0

...
...

. . .
...

0
. . . I 0













Equation (6) is further used in the formulation of the

dynamic inverse problem, as proposed in [5].

III. DYNAMIC INVERSE PROBLEM

Equation (6) becomes the ill-posed dynamic version of the

inverse problem for the linear case, which is equivalent to

the maximum a posterior (MAP) estimate when the statistics

are Gaussian [8], as follows:

ẑ[k] = argmax
z[k]

{ρz[k]|y[1],...,y[k]} (7)

where ρz[k]|y[1],...,y[k] is a conditional density. MAP estima-

tion looks for the current estimate ẑ[k] that is most probable,

given both the model F as well as the set of measurements

y[1], . . . ,y[k].
The solution to Eq. (7) is to obtain through the following

recursion, where the equations to generate the prior mean and

covariance from the posterior are often referred as the time

update equations of the Kalman filtering, and the equation

to generate posteriors from the priors are referred as the

measurement update equations. Just before measuring y[k]
our state of knowledge is described by the prior mean and

covariance of z[k]. After measuring y[k], we compute in

sequence the time update equations:

ẑ[k]− = F ẑ[k − 1] (8a)

C[k]− = FC[k − 1]F T +Cη (8b)

where ẑ[k]− is defined as a priori estimation of ẑ[k], and

C[k]− is defined as a priori covariance. Then, we compute

G[k] = C[k]−MT

(

MC[k]−MT +M−1CηM
)−1

(9a)

ẑ[k] = ẑ[k]− +G[k]
(

y[k]−Mẑ[k]−
)

(9b)

C[k] = (I −G[k]M)C[k]− (9c)

For a linear model with Gaussian noise statistics the

Kalman filter produces the optimal estimates ẑ[k]. Because

the mean and covariance completely specify a Gaussian

density function, the Kalman filter effectively estimates the

conditional density ρz[k]|y[1],...,y[k] at each time.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

When using an MVAR model, at least, two main issues

are to be solved: the parameter estimation and the optimal

selection of model order. To perform the former task, the

MVAR parameters are estimated by using the Kalman filter,

due to the precision of the reconstruction of the signals

obtained with this method [9]. Regarding the latter issue, it

has been taken the model order that minimizes the Bayesian

Information Criterion BIC, given by,

BIC(p) = −2 ln |C2

e |+ 2p ln(N). (10)

where C2

e is the estimation error covariance matrix of

parameters Ai, i = 1, . . . , p, and N is the number of signal

samples.

To develop a comparative analysis between the proposed

method and the static method, a simulation experiment is

carried out. The system dynamics is approximated through

second order linear time invariant model taking into account
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Fig. 1. Model order selection using BIC

anatomic constraints related with spatial coupling between

sources. Thus, the dynamic inverse problem solutions are

compared for a given set of simulated EEG trials. In this way,

the following errors are used to evaluate the performance:

localization error and data fit, defined as:

– Localization error:

Le = ||rdip − r̂dip||2 (11)

where ||.||2 is the L2 norm, rdip and r̂dip are original

dipole and estimate dipole positions respectively.

– Data fit error:

Df =
1

T

T
∑

k=1

||y[k]− ŷ[k]||

||y[k]||
(12)

where y[k] and ŷ[k] are original EEG and estimated

EEG respectively.

B. Simulated EEG recordings

A major issue regarding EEG source localization is obtain-

ing its meaningful evaluation, Particularly, because the true

source locations are not available if testing with real EEG

data; therefore a reliable estimation of reconstruction error

poses a challenge. Thus, the most common approach is to use

simulated EEG data where underlying neural activity sources

are known. For this purpose, one source randomly located

into the brain is considered for simulation. The generation

of simulated EEG dataset requires for selecting a model of

the brain dynamics, which should display a proper complex

spatio–temporal behavior. Here, the temporal dynamics are

suggested to be simulated using a second order linear model

comprising one sine function, which are applied in one

source with frequency in the alpha band (namely, 10 Hz).

Specifically, the simulated brain dynamics are generated by

using the following time model structure:

xk = A1x[k − 1] +A2x[k − 2] + ε[k] (13)

where the process noise ε[k] holds the artificial harmonic

function with sampling rate of value 1 kHz, A1 = a1I+b1L

and A2 = a2I, being I ∈ R
3N×3N the identity matrix.

Notation L ∈ R
3N×3N stands for the matrix operator that

represents the spatial interaction among sources [4], [5]. The

next values are assumed as the initial set of parameters: a1 =

1.2, b1 = 0.05, a2 = −0.9, which had been empirically fixed

in [5]. Besides, in accordance with the measurement model

given in Eq. (13), 20 synthetic EEG data trials of one–second

length are generated from the simulated current densities in

Eq. (13) by multiplication with the lead field matrix M .

For achieving the methodology robustness, the additive noise

term ε is given for several signal noise ratios (SNR) (namely,

5, 10, 15, 20, 25, and 30 dB) [10]. Prior to computing an

inverse solution, a discretized solution space is defined as a

regular grid of dimension 10×10×10 mm uniformly located

sources into the brain. At each source, the 3D local current

density vector is mapped, as usual, to the 33 electrode sites

for the 10− 20 standard international system. The solutions

are computed over a realistic head model calculated with the

boundary element method described in [11].

C. Estimation Results

TABLE I

MEAN DATA-FIT ERROR (%) FOR DYNAMIC MODEL WITH TIME

INVARIANT PARAMETERS

Approach Source 5 dB 15 dB 25 dB

MVAR-KF surface 2.75 ± 0.8 1.76± 0.93 1.32± 0.78
deep 2.84 ± 0.74 2.26± 0.87 1.59± 0.83

STATIC surface 3.25 ± 0.96 1.84± 0.77 1.84± 0.92
deep 4.96 ± 0.73 3.86± 0.8 2.76± 0.56

In Table I, it can be seen consistent results with those

presented in [3] which used a spheric head model for the

static-case. When a MVAR model with Kalman filter is used,

the performance of the estimator is improved in case of

superficial and deep sources compared to the static case.

Furthermore, the performance of the algorithm decreases as

the source to be found is deep, because it captures the dy-

namics of nearby sources. The Fig. 2 shows that the proposed

methodology captures the dynamics of all sources, presented

with larger original source simulated and dispersion around

it. The Fig. 4(c) shows that the dynamic method has less

dispersion that obtained by the static method of the Fig.

4(b). Fig. 3 displays values of the grand mean of localization

error, accomplished for both cases of dynamic and static

modeling, where the following notations stand for compared

methods of estimation: static inverse problem (static), and

dynamic MVAR (dyn). It should be quoted that attained error

values for the baseline static case are consistent with the ones

assessed when using a spheric head model in [3]. As seen, the

MVAR model outperforms the static performance, specially,

in case of low SNRs.

To make clear the influence of the discussed estimation

methods of dynamic neural activity based on MVAR models,

Fig. 4(a), 4(c) and 4(b) depicts the ESL at a time instant for

the original activity, the estimated activity using the MVAR

model and the estimated activity using the static inverse

problem, respectively. The mapping is carried out for a deep

source using a three layer realistic head model, which is

computed based on the Boundary Element Method. It can be

seen that the dynamic estimation method of Fig. 4(c), lead to

an improved reconstruction of the neural activity, although
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Fig. 3. Localization error for several SNRs

the static method considerably increases the amplitude at the

neighborhood sources compared with the true activity.

V. CONCLUSIONS

This paper addresses the problem in EEG source localiza-

tion, using a second order multivariate autoregressive model

with time invariant parameters coupled with the Kalman

filter. The obtained results show a better performance in

terms of the localization error and data fit error against

the static case for several noise ratio. In comparison with

the dynamic methods proposed in [5], an improvement in

the selection of the model is achieved since it is estimated

directly from the data. Even when a regularized inverse

is used to find the model matrices, the estimated model

represents the relations among sources more adequately than

generalized models. As future work, a simplified dynamic

nonlinear model structure should be estimated directly from

the data obtaining a non uniform model of the brain for a

better representation of internal connectivity among sources.
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Fig. 4. 3D mapping for original and estimated neural activity
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