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Abstract— One major challenge in neuroscience is to identify
the functional modules from multichannel, multiple subjects
recordings. Most research on community detection has focused
on finding the association matrix based on functional connec-
tivity, instead of effective connectivity, thus not capturing the
causality in the network. In this paper, we propose a community
detection algorithm suitable for weighted and asymmetric (di-
rected) networks representing effective connectivity, and apply
the algorithm to multichannel electroencephalogram (EEG)
data. In addition, we extend the algorithm to find one common
community structure from multiple subjects.

I. INTRODUCTION

With the advance of neuroimaging technology, such as
EEG, it is possible to record brain activity with higher
temporal resolution and accuracy than ever before. In order
to understand the functioning of the brain better, methods
to identify the communities or functional modules from the
observed multichannel, multiple subjects recordings have
been developed. Functional and effective connectivity are
two widely studied measures to quantify the connectivity pat-
terns in the brain. Unlike functional connectivity which only
quantifies the statistical dependencies between two processes,
effective connectivity quantifies the influence one node exerts
on another node. Traditionally, effective connectivity has
been quantified using measures of causality, such as Granger
causality and partial directed coherence (PDC) [1]. Granger
causality based methods are model dependent and limited to
detecting the linear relations, however, EEG recordings are
known to have nonlinear dependencies between recordings
from different sites. Therefore, in our previous work, directed
information was proposed to quantify the information flow
in the brain network [2]. Unlike Granger causality, directed
information is model free and can quantify the nonlinear
relations.

Although these measures are effective at quantifying the
relationship between pairs of neuronal populations, they do
not reveal the actual network structure. In recent years, graph
theoretic methods, such as community detection, have been
applied to association matrices defined by either functional
connectivity or effective connectivity, i.e., to undirected or
directed networks. For example, functional MRI data has
been used to show that community structure changes with
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age [3]. However, most of the work so far has focused on
undirected networks [4]. Therefore, in this paper, we focus on
the graph representation of the brain networks using effective
connectivity, which results in a weighted and asymmetric
association matrix.

In order to discover the underlying organization of the
network, traditional clustering algorithms such as Kernighan-
Lin algorithm, agglomerative (or divisive) algorithm, k-
means clustering, etc., have been used widely. However,
these algorithms need to pre-determine the number of clus-
ters [5]. Therefore, modularity based algorithms are widely
used to choose the best partitions of a network by maximiz-
ing the modularity, which include greedy techniques such as
simulated annealing and spectral optimization [5]. Recently,
Blondel introduced a greedy approach for the modularity
optimization of the weighted graph, which is proven to be
efficient, multi-level and close to the optimal value obtained
from slower methods [6]. Meunier applied this method to
functional MRI and investigated the hierarchical structure
of the functional brain network [7]. Here we extend this
algorithm to weighted and directed networks to find the
functional communities.

In this paper, we concentrate on a study focused on
understanding the cognitive control networks in the brain, in
particular those involved in error-processing across multiple
subjects. The traditional way to deal with group analysis is to
determine the community structure of each subject separately
and average the results. However, this method ignores the
between-subject variability and the results may be influenced
by some outliers [7]. In this paper, instead of maximizing the
modularity and identifying the communities of each subject
separately, we detect the community structure of a group by
maximizing the total modularity of the group.

II. BACKGROUND

A. Modularity

The concept of modularity is motivated by the idea that
nodes in the same module have very dense connection
and sparse inter-module connection [8]. Modularity is first
proposed as a stopping criteria for the Girvan and Newman
algorithm [9], but later widely used as a quality function to
choose the best partitions of a network. A good partition of a
network has high modularity Q, where Q=(fraction of edges
within communities)-(expected fraction of such edges) [8].
The original expression of modularity for undirected binary
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networks is given as,

Q =
1

2m

∑

i,j

[
Aij − kikj

2m

]
δci,cj , (1)

where Aij is the adjacency matrix, ki is the degree of
vertex i, δci,cj is equal to 1 when i and j are in the same
community; is equal to 0 otherwise. For a directed network,
the probability of a directed edge relies on the in-degree
and out-degree of the vertex. Leicht extends the definition of
modularity to directed binary networks as [8],

Qd =
1
m

∑

i,j

[
Aij −

kin
i kout

j

m

]
δci,cj , (2)

where kin
i (kout

i ) is the in-degree (out-degree) of vertex i.
Arenas gives a more general expression of modularity to
directed weighted networks [10],

Qgen =
1

AW

∑

i,j

[
Wij −

sin
i sout

j

AW

]
δci,cj , (3)

where Wi,j is the weight of edge ei,j , sin
i (sout

i ) is the
in-degree (out-degree) of vertex i, AW =

∑
Wi,j . In this

paper, Wi,j is quantified by the directed information measure
introduced in the following section.

B. Directed information
Different information measures have been proposed to

quantify the causal relationship between two random pro-
cesses. Directed information (DI) developed by Massey has
been proven to be a suitable measure to study the information
flow in networks of stochastic processes [11]. The definition
of DI for two length N sequences X = XN = X1, · · · , XN

and Y = Y N = Y1, · · · , YN is as follows:

DI(XN → Y N ) =
N∑

n=1

I(Xn; Yn|Y n−1),

=
N∑

n=1

[H(XnY n−1)−H(XnY n)] + H(Y N ),

=
N∑

n=1

[I(Xn;Y n)− I(Xn; Y n−1)],

(4)

where Xn = (X1, . . . , Xn), Y n = (Y1, . . . , Yn) are length
n random sequences.. I(X;Y ) is the mutual information be-
tween two random variables X and Y . Since 0 < DI(XN →
Y N ) < I(XN ; Y N ) < ∞, in practice a normalized version
of DI, which maps DI to the [0, 1] range is used for
comparing different interactions [12]:

ρDI =
√

1− e−2
∑N

n=1 I(Xn;Yn|Y n−1). (5)

Based on the definition of DI, the computation of DI
requires the estimation of joint probabilities of high dimen-
sional random variables over time. In this paper, directed
information estimation based on mutual information is used
to estimate the DI directly from EEG data by using adaptive
partitioning method [13].

III. ALGORITHM FOR COMMUNITY DETECTION

A. Algorithm for community detection for a single graph
In this paper, we extend the method proposed by Blon-

del to weighted and directed networks [6]. The algorithm
consists of two steps. First, for each node i, the gain of the
modularity ∆Qgen is computed when the node is assigned to
the communities of all other nodes j, j = 1, · · · , N and j 6=
i, and the community for which ∆Qgen is highest is chosen.
This process is applied sequentially for all nodes. ∆Qgen,
which partly determines the efficiency of the algorithm, can
be computed as follows,

∆Qgen =
1
W

Nj∑
p=1

(
Ai,jp −

sout
i sin

jp

W
+ Ajp,i −

sin
i sout

jp

W

)

− 1
W
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Ai,ip −

sout
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W
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i sout

ip

W

)
,

(6)

where jp ∈ Cj , ip ∈ Ci and ip 6= i, Nj (Ni) is the
number of nodes in community Cj (Ci) to which node j
(i) belongs, sin

i (sout
i ) is the in-degree (out-degree) of vertex

i. The first term of the right hand side of above equation is
the gain of modularity when node i moves to Cj , while the
second term is the modularity gained when node i stays in
its original community Ci. Next, the generated communities
from the first step are used to form several meta-nodes. The
weights between any two new nodes are given by the sum
of the weights of edges between nodes in the corresponding
communities [6].

Anew(inew, jnew) =
Ni∑

i=1

Nj∑

j=1

Ai,j , (7)

where inew, jnew = 1, · · · , tN , tN is the current number of
meta-nodes, and i = 1, · · · , N , N is the number of nodes.
The two steps are iterated until the maximum modularity is
achieved. This algorithm is shown in Algorithm 1.

B. Algorithm for community detection for multiple subjects
In neuroscience, one of the challenging problems is group

analysis when analysis from multiple subjects need to be
merged. There are two broadly used approaches for group
analysis, i.e., ‘virtual-typical-subject’ (VTS) approach and
‘individual structure’ (IS) approach. The former approach
averages the group data to obtain one community structure
for the whole group. The latter one applies a clustering
algorithm (e.g. Algorithm 1) to each individual subject and
finds the common structures among them. These approaches
do not consider either the inter-subject variability or the
effect of outliers. For this reason, in this paper, we extend
our community structure algorithm to multiple subjects by
maximizing a common modularity function across subjects
as shown in Algorithm 2. To be more specific, compared to
Algorithm 1, instead of computing the gain of modularity
when changing the community of node i for one subject, we
consider the increase of the modularity of the whole group
(line 8).
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Algorithm 1 Community detection of weighted network
Input: Weighted adjacency matrix A ∈ (0, 1)N×N ,

nodes 1, · · · , N , initial community structure C =
{{1}, · · · , {N}}, tN = N .

Output: M Communities.
1: repeat
2: ∆Qtotal = 0;
3: Compute the modularity Q of the current network;
4: for h = 1 to tN do
5: for j = 1 to tN do
6: The change of modularity ∆Qgenj when node h

is assigned to Cj ;
7: end for
8: j∗ = arg maxj ∆Qgenj ;
9: if ∆Qgenj∗ > 0 then

10: Cj∗ = Cj∗ ∪ vh;
11: end if
12: end for
13: Compute the change of the modularity of the current

network ∆Qtotal = Qnew −Q;
14: Nodes in the same community form new meta-nodes;
15: tN is equal to the current number of communities;
16: Recompute the weighted matrix A ∈ (0, 1)tN×tN ;
17: until ∆Qtotal ≤ 0.

IV. RESULTS

In this section, we test the effectiveness of the proposed
community detection algorithm on both synthetic network
and real EEG data.

A. Synthetic data

In this subsection, we test our algorithm on a directed
network with 64 nodes and 4 clusters, with each cluster
having 16 nodes. Each entry of the association matrix is
uniformly distributed between [0, 1], which resembles the
normalized DI value. The means of intra-cluster connectivity
strength in the four clusters are 0.3, 0.5, 0.7, and 0.9,
respectively. The mean of inter-cluster connectivity is 0.15.
To demonstrate the robustness of the algorithm, the standard
deviation of these distributions is modified from 0.1 to 0.5
with a step size of 0.1. The community detection results are
evaluated by computing the percentage of false discoveries
F ,

F =
N∑

i,j

Oi,j −Mi,j

N2
(8)

where N is the number of nodes, Oi,j is a binary matrix
with entries equal to 1 if nodes i and j are in the same
cluster. If nodes i and j are identified in the same cluster
by the algorithm, then Mi,j = 1; otherwise, Mi,j = 0.
Without loss of generality, we generated the network 10
times and the average F is obtained for different standard
deviations. The result is shown in Fig.1. We can observe
that the false discovery rate grows with increasing standard
deviation. Even so, the maximum false discovery rate of our
algorithm is around 0.16, which is low and acceptable.

Algorithm 2 Community detection of multiple weighted
networks
Input: Weighted adjacency matrix Ai ∈ (0, 1)N×N , i =

1, · · · , L, nodes 1, · · · , N , initial community structure
C = {{1}, · · · , {N}}, tN = N .

Output: M Communities.
1: repeat
2: ∆Qtotal = 0;
3: Compute the modularity Qi of the current network of

subject i, i = 1, · · · , L;
4: The modularity of the group is Q =

∑L
i=1 Qi;

5: for h = 1 to tN do
6: for j = 1 to tN do
7: The change of modularity ∆Qi

genj
when node h

is assigned to Cj for subject i, i = 1, · · · , L;
8: The change of the whole group is ∆Qgenj =∑L

i=1 ∆Qi
genj

;
9: end for

10: j∗ = arg maxj ∆Qgenj ;
11: if ∆Qgenj∗ > 0 then
12: Cj∗ = Cj∗ ∪ vh;
13: end if
14: end for
15: Compute the modularity of the whole group Qnew =∑L

i=1 Qi
new, Qi

new is the modularity of subject i;
16: Compute the change of the modularity ∆Qtotal =

Qnew −Q;
17: Nodes in the same community form new meta-nodes;
18: tN is equal to the current number of communities;
19: Recompute the weighted matrix Ai ∈ (0, 1)tN×tN of

subject i, i = 1, · · · , L;
20: until ∆Qtotal ≤ 0.
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Fig. 1. False discovery rate of the community detection algorithm.

Moreover, to test the effectiveness of our group analysis
method, we test Algorithm 2 on a group of six directed
networks with the same community structure. Each network
has 64 nodes and 4 clusters, with each cluster having 16
nodes. Each entry of the association matrix is uniformly
distributed between [0, 1]. The means of intra-cluster con-
nectivity strength in the four clusters are 0.3, 0.5, 0.7, and
0.9, respectively. The mean of inter-cluster connectivity is
0.15. For each network, the standard deviation of all the
edge values are randomly chosen from [0.1, 0.2, 0.3, 0.4, 0.5],
which leads to the variation across the six networks. Without
loss of generality, we generate 10 simulations of networks to
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TABLE I
AVERAGE FALSE DISCOVERY RATE

Approaches Algorithm 2 VTS IS
F 0.0125 0.0250 0.3143

get the averaged false discovery rate. In addition, we compare
our method with the two standard approach, i.e., VTS and
IS. The averaged false discovery rate F for each method is
shown in Table I. We can observe that the proposed algorithm
has the lowest false discovery rate.

B. EEG Data

In this paper, we examined EEG data from a study contain-
ing the error-related negativity (ERN). The ERN is a brain
potential response that occurs following performance errors
in a speeded reaction time task. Previous work indicates that
there is increased information flow associated with ERN
for the theta frequency band (4 − 8 Hz) and ERN time
window 25 − 75 ms for Error responses (ERN) compared
to Correct responses (CRN) [14]. We analyze data from
10 subjects for both the CRN and ERN. EEG data are
preprocessed by the spherical spline current source density
(CSD) waveforms to sharpen ERP scalp topographies and
eliminate volume conduction [15]. In addition, bandpass
filter is used to obtain signals in the theta band. The effective
connectivity quantified by DI is computed over a window
corresponding to the ERN response (0 − 100 ms after the
response), for all trials between 30 electrode pairs in the
theta band. Once the connectivity matrices for each response
type of each subject is obtained, we use Algorithm 2 to
identify the community structure of the group. Since it is a
multi-level clustering algorithm, here we give the clustering
result for the first level of clustering (highest resolution). The
results are shown in Fig. 2. We can observe that the clusters
of ERN are more localized. In addition, the frontal and
central-parietal regions are not in the same cluster for ERN,
which shows the functional specialization of the frontal and
central-parietal regions whereas for CRN that specialization
does not exist. The results are aligned with previous work
in [16], which shows that error processing is controlled by
the communication between the lateral prefrontal cortex and
medial prefrontal cortex.

V. CONCLUSIONS

In this paper, we introduced a hierarchical community
detection algorithm to identify the modules in the effective
brain network. The association matrix of the network is
obtained by applying the DI measure to EEG data involving
a study of error-related negativity. In addition, we proposed
a group analysis method to obtain a common community
structure across subjects to address the problem of variability
across subjects. The proposed method is applied to both
synthetic data and EEG data and is shown to discriminate
between erroneous and correct responses in terms of the
community structures obtained.

(a) (b)

Fig. 2. Applying the algorithm to 10 subjects. (a) Corrected responses, 8
clusters. (b) Error related responses, 10 clusters.
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