
Detection and Removal of Stimulation Artifacts in

Electroencephalogram Recordings

Ulrich Hoffmann, Woosang Cho, Ander Ramos-Murguialday, and Thierry Keller

Abstract— Stimulation artifacts are short-duration, high-
amplitude spikes which can be observed in electroencephalo-
gram (EEG) recordings whenever surface functional electrical
stimulation (FES) is applied during recordings. Stimulation
artifacts are of non-physiologic origin and hence have to be
removed before analysis of the EEG can take place. In this
paper, algorithms for the detection and removal of stimulation
artifacts are presented. The algorithms require only little com-
putational resources and can be applied online, while signals are
recorded. Therefore, the algorithms are suitable for applications
such as online control of FES based neuroprostheses by a brain-
computer interface. Tests are performed with datasets recorded
from two subjects for artifact durations ranging from 0.5 ms to
10 ms. After application of the artifact removal algorithms the
signal-to-noise ratio of the reconstructed signals ranges from
15 dB to 45 dB, depending on the duration of artifacts and the
type of algorithm.

I. INTRODUCTION

Surface functional electrical stimulation (FES) is a tech-

nique which uses electrodes attached to the skin to activate

nerves. Short, pulsed currents are applied to the electrodes

and trigger action potentials in the nerves under the elec-

trodes. Many applications of FES exist, including restitution

of upper- or lower-limb function after spinal cord injury,

and rehabilitation of upper- or lower-limb function after

stroke. Since FES activates nerves, the effects of FES can

be observed in the stimulated nerves, in muscles or organs

innervated by the stimulated nerves, and in the central

nervous system (through activation of afferent nerves and

through proprioception).

While basic effects of FES nowadays are well understood,

many questions regarding the effect of FES on brain activity

remain unanswered. Therefore, studying the immediate and

long-term effects of FES on brain activity is an inter-

esting and timely research topic. A simple but effective

neuroimaging method, which can be used for such studies

is the electroencephalogram (EEG). However, the study of

immediate effects of FES on brain activity is hampered by

so-called stimulation artifacts appearing in the EEG when

it is recorded while stimulation takes place. The stimulation

artifacts can be several orders of magnitude larger than the

physiologic EEG activity, and therefore techniques for the

removal of stimulation artifacts from EEG are needed.
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Previous studies concerning the removal of stimulation

artifacts from electrophysiological signals have focused on

modifications of the measurement setup and hardware used

for recording signals, as well as on algorithm development

for removing artifacts. Concerning modifications of the

measurement setup, three recommendations can be found

in the literature: a) maximization of the distance between

stimulation and recording electrode, b) use of ground straps

connecting subject and amplifier to the ground, and c) proper

skin preparation and use of non-polarizable electrodes [1],

[2]. These techniques reduce artifact amplitude by respec-

tively reducing volume conducted currents (a), displacement

currents (b), and electromagnetically coupled currents (c)

generated during stimulation [1], [2].

Several studies contain reports about specifically con-

structed amplifiers and stimulators (e.g [3], [4]). A simple

example are recording amplifiers which can be synchronized

with the stimulator and which switch to sample and hold

mode during artifacts [3]. Another hardware based technique

employs stimulators which use a constant voltage output

stage between stimulation pulses and a constant current

output stage during stimulation [4]. This allows to reduce

the duration of artifacts but does not necessarily reduce the

amplitude of artifacts.

An alternative to hardware based methods are algorithms

for artifact removal. The main advantages of such algorithms

are that recordings can be done with standard hardware

and that algorithms can be flexibly adapted to different

artifact parameters and recording situations. Many algorithms

compute estimates of the shape of stimulation artifacts and

subtract the estimated artifact shape from the recordings.

An example is the algorithm described in [5], in which the

artifact shape is determined by averaging over individual

artifacts. Another example is the algorithm described in [6],

in which the artifact shape is computed by averaging artifacts

with exponential forgetting. The main disadvantage of such

algorithms is that it is inherently difficult to obtain an esti-

mate of the quality of the signals after artifact removal. This

is so because the ground-truth signal, i.e. the signal without

artifacts cannot be measured. Furthermore, the amplitude and

shape of artifacts resulting from FES can fluctuate rapidly

and strongly, making the precise fitting of artifacts a difficult

task.

Subtraction based algorithms concentrate on modeling the

artifacts. However, it is also possible to focus on mod-

eling artifact-free electrophysiological signals. Algorithms

following this approach replace the measurements affected

by artifacts with values interpolated from non-contaminated
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portions of the signal. This has the advantage that reliable

estimates of the quality of the signal after artifact removal

can be obtained. To obtain such estimates it is sufficient to

remove small portions from a clean signal, to interpolate

the removed portions, and to compare the interpolation with

the true signal. A further advantage is that artifact removal

based on modeling artifact-free signals does not depend on

the shape of artifacts. Hence, the same algorithm can be

applied for signals recorded during stimulation with different

parameters (e.g. stimulation with varying pulse width). An

example for the signal modeling approach to artifact removal,

is a frequency domain implementation applied to EEG sig-

nals recorded during deep brain stimulation in Parkinsons

patients [7].

Here, we present and compare two simple time-domain

methods for removing stimulation artifacts from the EEG.

Both methods consist of a module for artifact detection

and of a module for interpolating missing samples from

neighboring samples. The algorithms have been designed to

require only relatively little computational power and are in

principle suitable for online application during the recording

of signals. This is important in applications such as FES for

grasping controlled by a brain-computer interface [8] and

other bio-feedback applications combining EEG and FES.

The outline of the rest of this article is as follows. In

Section II details about the hardware and experiment setup

used for recording EEG and performing FES stimulation

are described. Furthermore, examples of the typical shape

of stimulation artifact in EEG records are given. In Section

III algorithms for detecting and removing artifacts from EEG

signals are described. Results are given in Section IV, and

are discussed in Section V.

II. EXPERIMENT SETUP

To test the algorithms described in this paper, EEG

datasets were recorded from two subjects without known

neurological deficits (S1 female, age 23 years; S2 male,

age 36 years). From both subjects data was recorded in two

conditions.

In condition I, a Compex Motion stimulator [9] was used

to apply FES to the forearm of the subjects, with the active

electrode positioned close to the motor point of the extensor

muscles of the wrist. Stimulation trains with a duration of

approximately 3 seconds were applied between seconds 3

and 6 of 10 second long trials. Stimulation frequency was

set to 35 Hz, biphasic pulses were employed, and the pulse

width was linearly increased from 0 µs to 300 µs during the

first second of stimulation, then held constant for one second,

and decreased from 300 µs to 0 µs during the last second.

The stimulation current was set individually for each subject

to evoke well-defined wrist movements. For each subject 40

trials were recorded in condition I.

In condition II, a paradigm typically used in motor im-

agery experiments was employed. Trials had a duration of 10

s and in each trial subjects were instructed to imagine either

left-hand movement, right-hand movement, or to relax. For

subject S1, 120 trials (40 left-hand, 40 right-hand, 40 relax)

were recorded and for subject S2, 90 trials (30 left-hand, 30

right-hand, 30 relax) were recorded.

To record EEG signals a g.Tec g.USBamp amplifier was

used. Sampling frequency was set to 2.4 kHz, the reference

electrode was attached to the right mastoid and the ground

electrode to the left mastoid. Sixteen recording electrodes

were distributed over the motor cortex and the parietal

cortex. Electrode impedance was kept below 5 kOhm for

all electrodes. Examples of the recorded artifacts are shown

in Fig. 1.

III. ALGORITHMS

A. Detection of Artifacts

Stimulation artifacts in EEG recordings consist of sharp,

high-amplitude spikes, occurring simultaneously on all

recording channels. The artifact detection algorithm pre-

sented here exploits these characteristics by computing first

order differences in each recording channel and by summing

up the first order differences over channels. Denoting by

xc(t) the EEG signal recorded from channel c at time t

and by C the number of channels, this can be expressed

as follows:

d(t) =

C
∑

c=1

xc(t + 1) − xc(t) (1)

In the resulting one-channel signal d(t) the artifacts are well

represented and can be reliably detected. An algorithm which

has been proposed for the detection of spikes from recordings

of neuronal spiking activity (multiunit recordings) is used for

this [10]. The first step in this algorithm is to compute the

median absolute deviation of the input signal in a sliding

window. Denoting by W(t) = {t−W, t−W +1, . . . t+W}
a window of length 2W + 1 samples, centered at t, this can

be expressed as:

m(t) = med
i∈W(t)

|d(i) − med
j∈W(t)

d(j)| (2)

Samples of d(t) are flagged as belonging to artifacts when-

ever the absolute value of d(t) is above a threshold set to a

multiple of the median absolute deviation:

a(t) =

{

1 if |d(t)| > αm(t)
0 if |d(t)| ≤ αm(t)

(3)

As a last step, the detections in a(t) are clustered and

extended using three rules:

• If none of the D samples before a detection at t is

flagged as artifact, a(t − 1) and a(t − 2) are set to 1.

• If none of the D samples after a detection at t is flagged

as artifact, a(t + 1) and a(t + 2) are set to 1.

• If two detections are less than D samples apart, the

samples between the detections are flagged as artifacts.

B. Removal of Artifacts Using Linear Interpolation

Linear interpolation is a simple and straight-forward

method to interpolate samples flagged as artifacts. Denoting

by xc(ts) the value of the last sample before the artifact and

by xc(te) the value of the first sample after the artifact, linear
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Fig. 1. Examples of stimulation artifacts. Left: Pulse train resulting from stimulation with the parameters described in Section II. Right: Detailed view
of 4 single artifacts from the pulse train. The artifacts have amplitudes of up to 1.5 mV, duration of about 4 ms, and show significant variations in shape
and amplitude.

interpolation of samples with t ∈ {ts +1, ts +2, . . . , te − 1}
is accomplished as follows:

x̃c(t) =
xc(te)(t − ts)

te − ts
+

xc(ts)(te − t)

te − ts
(4)

C. Removal of Artifacts Using a Gaussian Distribution

A more powerful approach than linear interpolation is de-

scribed in the following. The algorithm works by learning a

Gaussian probability density of short multi-channel segments

of EEG from artifact-free training data. This probability

density is used to infer the conditional density of samples

affected by artifacts from neighboring non-contaminated

samples.

To learn the Gaussian density, short segments of multi-

channel EEG containing data from T temporal samples and

C channels were extracted from the training data1. Each mul-

tichannel segment was normalized by subtracting the mean in

each channel, and by setting the variance of each channel to

1. As a final preprocessing step, column vectors of dimension

TC × 1 were formed from the normalized multichannel

segments. Denoting the training vectors resulting from this

procedure by zi and the number of training vectors by N ,

the sample mean m and covariance matrix Σ are computed

as follows:

m =
1

N

N
∑

i=1

zi, Σ =
1

N

N
∑

i=1

(zi − m)T (zi − m) (5)

The probability density of a EEG segment z can then be

expressed as:

p(z|m,Σ) =
1

(2π)TC/2|Σ|1/2
e−

1

2
(z−m)T Σ−1(z−m) (6)

If only R samples in z can be reliably measured, the

probability density for the missing part is again Gaussian and

can be easily computed from the full density of the training

data. We denote by x the part of z which can be reliably

1
T was set to 110 samples in the experiments reported here.

measured, and by y the the samples affected by an artifact:

z =

[

x

y

]

(7)

The probability density at y given x is then:

p(y|x, m̂, Σ̂) =
1

(2π)
T C−R

2 |Σ̂|
1

2

e−
1

2
(y−m̂)T Σ̂−1(y−m̂) (8)

To compute m̂ and Σ̂, m and Σ are split into portions

corresponding to the observed and unobserved parts of z:

m =

[

a

b

]

, Σ =

[

A C

CT B

]

(9)

The mean and covariance of the conditional density can

then be computed as follows:

m̂ = b + CT A−1(x − a), Σ̂ = B − CT A−1C (10)

The samples affected by an FES artifact can now simply

be replaced by the corresponding values from m̂.

IV. RESULTS

A. Detection of Artifacts

To evaluate the performance of the artifact detection

algorithm, the data recorded in condition I, i.e. the data

recorded with FES stimulation was used (cf. Section II). The

detection performance was evaluated in terms of true posi-

tives (correctly detected artifacts), false positives (detections

without artifacts), and false negatives (undetected artifacts).

The number of true positives was defined as the number of

detected artifacts having the following characteristics:

• Duration more than 3 ms and less than 7 ms

• Distance to neighboring detections in the range 1
Fs

− 2

ms to 1
Fs

+ 2 ms (Fs = 35 Hz)

False positives were defined as all detections not fulfilling

the above characteristics. The number of false negatives was

defined by computing from the stimulation parameters the

expected number of artifacts for each trial and by subtracting

the number of true positives.

The results of the evaluation showed that on the test data

all artifacts were detected and no false detections occurred.
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B. Removal of Artifacts

The datasets recorded in condition II (cf. Section II) were

used to evaluate the performance of the artifact removal

algorithms. To this end, in each trial artificial artifacts were

inserted in each channel at time points t = 3 + i
Fs

s, where

i ∈ 0 . . . 94 and Fs = 35 Hz, i.e. the temporal distribution of

the artificial artifacts was equivalent to the temporal distri-

bution of the true artifacts observed in the datasets recorded

in condition I. The duration of artificial artifacts was varied

between 1 sample (0.412 ms) and 24 samples (10 ms). Since

the algorithm for detection of artifacts was independently

evaluated with the datasets recorded in experiment condition

I , artificial artifacts were simply represented by NaNs.

After inserting artificial artifacts, the algorithms described

in Section III were applied to interpolate the EEG in the

intervals where the artificial artifacts were inserted. The

resulting data was then lowpass filtered with a cut-off fre-

quency of 45 Hz, and offset and trend were removed from

each trial. The same procedure, i.e. lowpass filtering and

removal of offset and trend was applied to the original data

recorded in condition II. The lowpass filtering and removal

of offset and trend was done in order to mimic typical steps

applied in EEG analysis and to ensure a realistic performance

evaluation of the algorithms.

The noise signal obtained by subtracting the filtered and

detrended original data from the filtered and detrended data

after artifact removal was used to quantify the performance

of the algorithms. Denoting by xc(t) the original data (after

detrending and filtering) and by x̃c(t) the data after artifact

removal, the difference signal nc(t) is:

nc(t) = xc(t) − x̃c(t). (11)

Using the noise signal and the true signal the signal-to-

noise ratio (in decibel) was computed for each trial:

s = 10 log10

∑C
c=1

∑t2
t=t1

xc(t)
2

∑C
c=1

∑t2
t=t1

nc(t)2
. (12)

The parameters t1 and t2 were set to include only the parts

of each trial affected by artifacts (seconds 3 to 6, cf. Section

II.). As an additional performance parameter the maximal

amplitude of the noise was determined for each trial:

p = max
t∈{t1,t1+1...t2},c∈{1,2,...C}

|nc(t)| (13)

Since the artifact removal algorithm based on Gaussian

density modeling relies on training data, 10 trials from each

of the datasets recorded in condition II were set aside for

training. The rest of the trials was used for performance

evaluation. The signal-to-noise ratio averaged over all trials

and the average peak noise are shown in Fig. 2.

V. CONCLUSION

The results show that comparatively simple artifact re-

moval algorithms allow to obtain good quality signals from

artifact-contaminated EEG recordings. The test data con-

tained only artifacts with high amplitudes and hence further

tests are necessary to see how artifact detection works
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Fig. 2. Average signal-to-noise ratio and average peak noise amplitude
obtained with the algorithms described in Section III.

with lower amplitude artifacts. Further improvements in

the signal-to-noise ratio might be achieved by tracking the

probability density of EEG signals over time, e.g. with a

Kalman filter. However, the applicability of such methods for

online artifact removal has to be critically examined because

the requirements in terms of computation time increase.
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