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Abstract—Sparse approximation is a novel technique in ap-
plications of event detection problems to long-term complex
biomedical signals. It involves simplifying the extent of resources
required to describe a large set of data sufficiently for classifica-
tion. In this paper, we propose a multivariate statistical approach
using dynamic principal component analysis along with the non-
overlapping moving window technique to extract feature infor-
mation from univariate long-term observational signals. Within
the dynamic PCA framework, a few principal components plus
the energy measure of signals in principal component subspace
are highly promising for applying event detection problems to
both stationary and non-stationary signals. The proposed method
has been first tested using synthetic databases which contain
various representative signals. The effectiveness of the method is
then verified with real EEG signals for the purpose of epilepsy
diagnosis and epileptic seizure detection. This sparse method
produces a 100% classification accuracy for both synthetic data
and real single channel EEG data.

Index Terms—Dynamic Principal Component Analysis, Sparse
Approximation, Feature Extraction, Signal Classification.

I. INTRODUCTION

EEG as the most effective and explicit method to reveals

the characteristic findings in several epilepsy related syn-

dromes [1]. The manual evaluation of EEG has therefore

been adopted as the routine process in epilepsy monitoring

and seizure detection for clinical diagnosis and treatment plan

making. Unfortunately, due to the absence of objective defi-

nition for the characteristic waveforms related to epilepsy, the

diagnosis involves a combination of the medical history of the

patient and EEG interpretation by expert neurologists which is

hampered by poor inter-observer reliability [2]. In automatic

diagnosis and seizure detection, classification of EEG signal

become an important task of this process. In particular, the

long-term observational non-stationary time series of EEG

data is difficult to analyze by many existing classification

techniques including support vector machine or statistical

processing tools such as conventional principal component

analysis (PCA) because of the complex characteristics, few

number of data samples and extremely high dimension of the

signal.

In high-dimensional data classification, sparse representa-

tion of the underlying signal is a key to classification that

aims for a simple classifier because of the data dimensional

reduction property [3]. The sparse representation for signal

classification looks for a low dimensional feature vector that

contains the most important information. Feature extraction

therefore involves simplifying the extent of resources required

to describe a large set of data accurately. Some feature

extraction approaches have been investigated for the study of

epilepsy and seizure detection, including a measure of signal

similarity in the correlation dimension ([4], [5]), a measure of

energy variation [6] and a measure of accumulated energy [7].

However, these single scale measures or their combinations

are not suitable for a long-term observational signal that

appears to be multi-scale in nature. In this paper, we propose

a multivariate statistical approach using dynamic principal

component analysis (DPCA) to extract feature information

from a univariate long-term observational signal. The use

of DPCA aims first to introduce additional dimensions for

the univariate signal to improve the representation of data

similarity, and then to represent the signal via PCA-based

low rank approximation to extract features that explain the

major data variance. With the DPCA framework, a method of

combining the first few PCs with the partial energy measures

of the signal in PC space is proposed to deal with spiky non-

stationary signals. In order to demonstrate its applications in

epilepsy and seizure detection problems, synthetic databases

that contain representative signals are first tested, followed by

an investigation using a set of real EEG data.

II. METHODOLOGIES

A. Principal Components Extraction by Dynamic PCA

Many study of time series data in event detection problems

suggests that a feature extraction method should be applied to

understand the complex structures of the data and differences

among them. The dependence of measurements suggests that

additional time-dependent variables should be introduced to

data analysis. Extraction of time-dependent variables was orig-

inally accomplished by introducing dynamic principal compo-

nent analysis [8]. This method applied to one dimensional time

series data considers a collection of observations, {y(1), y(2),
. . ., y(N)} ⊆ Rp from a biomedical signal y(k), where N

is the number of observations. The data matrix Y for further

PCA is arranged as follows:

Y = [y(k − l + 1), y(k − l + 2), · · · , y(k)], (1)

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 7167

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



where l is a time lag. This implies that using DPCA, one

first needs to select l in order to further analyze the data.

This procedure is often conducted by time series regression

techniques that involve parametric modeling such as fitting

the data to auto-regressive models. For feature extraction, the

determination of l is through the cross-validation procedure,

which selects the l that corresponds to the optimal classifi-

cation accuracy. When l is chosen, the number of underlying

variable of stochastic process is increased from 1 to l. PCA

is then applied to the covariance matrix of the data matrix

Y to evaluate the dynamics of stochastic processes y(k) by

analyzing the eigenvalues of the covariance matrix. In order

to potentially improve the performance of DPCA in event

detection problems, we propose a method of applying a non-

overlapping moving window technique. This method decreases

correlation of each extracted time-dependent variable in the

window when the width of the moving window is large.

Using the non-overlapping moving window technique, the data

matrix constructed from the N observations of a biomedical

signal y(k), denoted by Dy , is organized as follows:

Dy =











y(1) y(2) . . . y(l)
y(1 + l) y(2 + l) . . . y(2l)

...
...

...
...

y(ml − l + 1) y(ml − l + 2) . . . y(ml)











,

where N = ml, m is the total number of the moving windows

of y(k) each with length l. In this case, the observations of

each variable in Dy are less autocorrelated if l is a larger value

than the first significant time lag.

Application of the DPCA approach to each univariate time

series allows extraction of additional variables in order to

extend the number of variables from 1 to l, where l is the

length of non-overlapping moving windows. The benefit of

applying DPCA to univariate time series data is that, for a

large value of l, the sequence of data, y(k), y(k + l), . . .,

y(k + ml − l), for k = 1, . . . l (i.e., the data of each column

of the matrix Dy), becomes approximately uncorrelated. In the

training step of signal classification, this approach is applied to

each long-term signal of the training set and the obtained data

matrix from each signal is then formed together to become

the training data matrix for further principal components

extraction. Suppose that there are g groups of signal and there

is only r signal for each group. The data matrix constructed

from these r signals becomes D = [Dy1⊤, Dy2⊤, . . ., Dygr⊤]⊤,

with the size mgr × l. Thus, after organizing these univariate

time series data into the data matrix D, PCA is then applied

to map the matrix D into a new feature space. This possibly

reduces the number of extended variables from the time

domain if most of the data variance is explained by the first

few PCs. In PCA, the principal component score matrix L and

the principal component loading matrix V = (V1, . . . , Vl) are

obtained by decomposing the mr×l observation data matrix D,

into D=LV. Sparse approximation via PCA is then obtained

by approximating D by using a linear combination of first

few components, that is D ≈ L̂V̂, where L̂ and V̂ are low

rank matrix and V̂ consists of only first few PCs. We call this

method a first few PCs (FFPC) sparse approximation method.

This sparse approximation method are particularly useful for

classifying the stationary highly correlated signals.

Retaining only a few PCs for classification may cause insuf-

ficient dimensions of separating features when these first few

PCs are only able to explain a small amount of the total data

variation. The extracted features are the similarity measures

between the observed data and each PCs coordinate, these

similarity measures in terms of projection only may not be able

to successfully separate the data into different classes. In order

to improve the separability of the low dimensional feature

vector, we may construct the feature vector that contains the

first few PCs, e.g. first two PCs, ŷs
1
(k) and ŷs

2
(k) of the kth

window plus the partial energy measures of the kth window

in PC space, which is given as El1(k)=
∑l1

v=1
ŷs

v(k)2, where

k is the index of the non-overlapping moving window of the

test signal and k = 1, 2, . . . , m∗. The l1 is the number of

major PCs selected and m∗ is the total number of windows

of test signals. This approach makes use of data similarity

measure and data energy measure simultaneously. We refer

this method to a first few PCs plus energy measure (PCPEM)

method. The advantage of this method is that it enable to

capture data characteristics in terms of both the data variation

and the signal energy measure, in a subspace.

III. APPLICATIONS

The proposed methods are first applied to synthetic

databases that contain all kinds of representative signals in-

cluding surrogate data with correlations, trends, and nonsta-

tionarities. The databases are available in PhysioNet [9], a

public service of the Research Resource for Complex Physio-

logic Signals. The methods are then applied to an publicly

available EEG database [10] for the purpose of epilepsy

diagnosis and epileptic seizure detection, two important event

detection problems in epilepsy study. We focus only on the

sparse approximation using a low dimensional feature vector,

i.e. a three dimensional feature vector, as an input of data

classification, to improve the interpretability of sparse approx-

imation techniques and to promote the proposed method in the

application related to data visualization.

TABLE I
THE TABLE SUMMARIZES THE INFORMATION OF SYNTHETIC DATABASES.

Description of synthetic databases

S1 Correlated stationary; Signal 1 with α = 0.5,

here α is the signal correlation; Signal 2 with α = 0.9, N = 2
17.

S2 Surrogate signals with trends; Amplitude of trend As = 2; Period

T = 128; Signal 1 with α = 0.9; Signal 2 with α = 0.1, N = 2
17.

S3 Non-stationary signals with spikes; Amplitude Asp = 1, N = 2
17;

Signal 1 with spikes prob p = 0.05; Signal 2 with spikes signal only.

S4 Signals with different local std dev; N = 2
18;α = 0.1, σ1 = 1;

Signal 1 with σ2 = 4 (p = 0.05); Signal 2 with σ2 = 4 (p = 0.95).

S5 Signals with different local std dev; N = 2
18;α = 0.9, σ1 = 1;

Signal 1 with σ2 = 4 (p = 0.05); Signal 2 with σ2 = 4 (p = 0.95).

S6 Signals with different local correlations; Width W = 20, N = 2
17

Signal 1 with α1 = 0.1 (90%), α2 = 0.9(10%);
Signal 2 with α2 = 0.9 (10%) only
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TABLE II
THE RAND INDEX OF CLASSIFICATION RESULTS USING FIRST 3 PCS AS

THE INPUT OF ONE NEAREST NEIGHBOR CLASSIFIER UNDER THE DPCA
METHOD WITH DIFFERENT VALUES OF l.

Window Size S1 S2 S3 S4 S5 S6

l = 2
6 0.750 0.819 0.619 0.439 0.956 0.436

l = 2
7 0.968 0.980 0.659 0.479 0.998 0.370

l = 2
8 1.000 1.000 0.640 0.485 1.000 0.248

TABLE III
THE RAND INDEX OF CLASSIFICATION RESULTS USING FIRST 2 PCS PLUS

THE PARTIAL ENERGY MEASURE AS THE INPUT OF ONE NEAREST

NEIGHBOR CLASSIFIER UNDER THE DPCA METHOD WITH DIFFERENT

VALUE OF l AND DIFFERENT VALUES OF l1 .

l = 2
6 S1 S2 S3 S4 S5 S6

l1 = 2
5 0.760 0.698 0.992 0.990 0.999 0.961

l1 = 2
6 0.777 0.735 1.000 0.999 1.000 0.996

l = 2
7

l1 = 2
6 0.949 0.972 1.000 1.000 1.000 0.972

l1 = 2
7 0.968 0.976 1.000 1.000 1.000 1.000

l = 2
8

l1 = 2
7 1.000 0.984 0.961 0.992 1.000 0.900

l1 = 2
8 1.000 1.000 1.000 1.000 1.000 1.000

A. Classification of Synthetic Signals

We consider the synthetic data sets available in [9] because

these signals contain the important characteristics that often

are observed from complex biomedical signals. The informa-

tion about the synthetic data sets is summarized in Table I.

Parts of the signals (the first 210 data points) are depicted

in Figures 1(a), 1(b), 2(a) and 2(b). Our study shows that

classification based on the first few PCs is possible only for

stationary signals. In Figures 1(c) and 1(d), the extracted few

dimensional features are linearly separable, but the results

shown in Figures 2(c) and 2(d) suggest that retaining only

first few PC may fail the data classification that uses a linear

classifier. However, the feature extraction using the first two

PCs plus the partial energy measure performs better than the

one with PCs only as the extracted features are more linearly

separable.

The Rand index (RI) [11] is calculated to determine class

membership agreement for evaluating the performance of

signal classification. Table II shows the results of the RI for 6

different synthetic data sets with different choices of window

size l. With a small value of l, the classification accuracy

(specified by Rand index) is small, but with the increase

of the value of l, the classification accuracy is dramatically

improved, particularly for S1, S2 and S5. The results shown

in Figures 2(c) show that the FFPC method with the first

3 PCs only is not able to provide a separable features for

classification using a simple classifier when the signals appear

to be non-stationary, e.g. for data sets S3, S4, S6. In Table III,

with the increase of both l and l1, the classification accuracy of

using the PCPEM method that combines the first 2 PCs with

the partial energy measure in the feature vector is increased.

Also, this combined method is very promising in dealing with

both stationary and non-stationary data, in particular, for the

spiky signal classification. The results shown in Figures 1(d)

and 2(d) report this issue for data set S1, S3 and S4, where

S1 contains stationary signals and both S3 and S4 consist of

non-stationary, spiky signals.
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Fig. 1. The time series plot of the first 2
10 time points of the signals and

the scatter plots of extracted three dimensional features for data set S1.

B. Epilepsy Diagnosis and Epileptic Seizure Detection

The biomedical applications of the sparse approximation in

event detection problems are also demonstrated by using a set

of EEG signals in both of epilepsy diagnosis and epileptic

seizure detection problems. We consider the database in [10]

that consists of a set of EEG signals coming from healthy

volunteers, from patients during seizure-free intervals and from

patients at an onset of epileptic seizure. The normal EEG

signals (i.e., Sets A and B in [10] ) behavior similarly to the

synthetic data set S1 and the epileptic EEG signals (Set C, D

and E in [10])are similar to the types of synthetic data sets S3

and S4.

In order to diagnose epilepsy and detect epileptic seizures,

the non-overlapping moving window technique is used to

extract additional variables from an original univariate EEG

training signal. This method partitions each EEG signal of

Sets A, B, C, D and E using the window size l=256. We

compare the performance of data classification based on the

FFPC method and the PCPEM method, in both epilepsy

diagnosis and epileptic seizure detection problems. From the

scatter plots of three features extracted shown in Figures 3(a)

and 3(b) one can see that both the FFPC method and the

PCPEM method may perform similarly in the diagnosis of

epilepsy. But the scatter plots of three features extracted shown

in Figures 3(c) and 3(d) suggest that classification based on
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Fig. 2. The time series plot of the first 2
10 time points of the signals and

the scatter plots of extracted three dimensional features for data set S1.

the features from the PCPEM method may lead to a higher

classification accuracy than from the FFPC method in epileptic

seizure detection problems. In epilepsy diagnosis with l=256,

the classification leads to an accuracy rate of 95.9% for FFPC

method and a rate of 97.8% for PCPEM method. When l=512,

the PCPME method reach the 100% accuracy. In seizure

detection, both of methods reach the 100% accuracy rate when

l=512 is used.

IV. CONCLUSIONS

Using the DPCA framework, a small number of principal

components (sparse approximation) are successful in the ap-

plication of event detection in highly correlated signals, in

particular, the stationary signals. Within the DPCA framework,

a few principal components plus the energy measure of signals

in PC subspace are highly promising in the application of

event detection in both stationary and non-stationary signals.

This methodology contributes to event detection problems in

biomedical signal and is applicable to both stationary and non-

stationary ones. As several characteristic EEG patterns are

associated with well-defined epilepsy syndromes, it would be

more clinically significant to classify EEG into more classes

according to its corresponding epilepsy syndromes, which is

important for selection of therapy and assessment of prognosis

of the epilepsy. Differentiating between ictal and interictal

EEG findings are clinically important but arbitrary, unlike the

conventional epileptic seizure detection methods, the presented

method can be expanded easily to accommodate multi-class

−1000  −500     0   500  1000−
1
5
0
0

−
1
0
0
0

 −
5
0
0

  
  

0
  
5
0
0

 1
0
0
0

−2000

−1500

−1000

 −500

    0

  500

 1000

 1500

 2000

1st PC

2
n

d
 P

C

3
rd

 P
C

−3000 −2000 −1000     0  1000  2000

  
  

0
 5

0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

−800

−600

−400

−200

   0

 200

 400

 600

 800

1st PC

2
n

d
 P

C

P
a

rt
ia

l 
T

^2

(a)FFPC for epilepsy (b)PCPEM for epilepsy

diagnosis diagnosis

−3000 −2000 −1000     0  1000  2000  3000−
4
0
0
0−

3
0
0
0−

2
0
0
0−

1
0
0
0

  
  

0
 1

0
0
0

 2
0
0
0

 3
0
0
0

−3000

−2000

−1000

    0

 1000

 2000

 3000

 4000

1st PC

2
n

d
 P

C

3
rd

 P
C

−4000−3000−2000−1000     0  1000  2000  3000

  
  
 0

 5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

−3000

−2000

−1000

    0

 1000

 2000

 3000

1st PC

2
n

d
 P

C

P
a

rt
ia

l 
T

^2

(a)FFPC for seizure (b)PCPEM for seizure

detection detection

Fig. 3. Three dimensional features scatter plot obtained from the DPCA
method for EEG signals in Sets A, B, C, D and E for the FFPC method
and for PCPEM method in both epilepsy diagnosis and seizure detection. The
scatter plots in green, red, yellow, blue and black colors stands for signals in
Set A, B, C and D and E, respectively.

classification of various epileptic EEGs.
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