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Abstract—Most pulse oximeters determine blood oxygen 
saturation (SpO2) after calculating a coefficient, R, that 
represents the normalized ratiometric contributions of the 
pulsatile red and near-infrared photoplethysmograms (PPGs) 
acquired by the sensor.  This paper presents a new approach 
that uses principle component analysis (PCA) to separate the 
signal and noise components of unfiltered PPGs and provide 
the determination of R.  Also, rather than use peak-to-valley 
time intervals to obtain R, this technique uses eigenvalue and 
eigenvector data obtained during PCA to optimize these time 
intervals and improve the R calculation.  Early analyses on 
unfiltered PPGs from 16 subjects indicate that these R values 
compare to those obtained from FFT-based methods and yield 
SpO2 values consistent with those reported by a commercial 
unit.  All signal data are considered during the PCA process, so 
this technique shows promise to precisely segment clean versus 
noise-corrupted PPGs. 
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I. INTRODUCTION 
XIMETER history can be traced back to 1942, when 
Glenn Allen Millikan developed the first noninvasive 

optical device to estimate oxygen saturation in hemoglobin 
[1]. In 1972, Takuo Aoyagi developed what was known as 
the pulse oximeter, which obtained a quantity directly 
related to oxygen saturation in arterial blood (SpO2) by 
analyzing the pulsatile component of light absorption in 
perfused tissue at red versus infrared wavelengths [2]. Beer-
Lambert’s law [2] relates to this analysis, requiring that n 
equations (data from n wavelengths of light) be solved to 
obtain n solute concentrations (hemoglobin derivatives). 

In most pulse oximeters, two excitation wavelengths help 
to determine a normalized ratio of pulsatile absorption 
values – a ratio that plays a role in a linear calibration curve 
for oxygen saturation values between 70% and 100% [3]. 
For a CO-oximeter, additional wavelengths allow one to 
calculate, e.g., carboxyhemoglobin concentration [4]. A 
normalized ratiometric coefficient, R, is the key component 
in SpO2 calculation. Methods to calculate R include 1) signal 
amplitude extraction from pulsatile waveforms, 2) Fourier 
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transformation of pulsatile waveforms to extract the peak of 
each fundamental harmonic [5], and 3) independent 
component analysis (ICA) [6], e.g., the Discrete Saturation 
Transform used by Masimo Corporation [7].  

This paper presents a new method to estimate SpO2 from 
unfiltered PPGs, where two optimization strategies are 
employed. It also demonstrates that the PCA method offers a 
potential means to segment corrupted versus clean PPG data.   

II. METHODS 

A. Experimental Measurements and Parameter Definitions  
A custom wireless reflectance pulse oximeter [8] was used 

to acquire fingertip PPG data from 16 subjects. The two-
channel pulse oximeter (red at 660 nm, near-infrared at 910 
nm) yields four unfiltered PPG data streams (ACred, DCred, 
ACir, DCir) at a sampling frequency of fs = 240 Hz (see Fig. 
1). Each signal (pulsatile AC signal or DC baseline) offers 
up to 4096 digitization levels (range:  0–2.4 V). Note that the 
DC baseline is assumed to be constant in some pulse 
oximeters [9] or adjustable based on tissue perfusion level 
(i.e., the design employed here). While the DC signals used 
here are not constant, they usually occupy a limited range. 
This custom unit uses a compensation method afterwards to 
address discontinuities in the AC signal caused by 
immediate adjustments in the DC level [8]. 

 
Fig. 1.  Twenty seconds of representative raw fingertip PPGs: (a) near-
infrared and (b) red. Each channel contains AC and DC data.    

SpO2 calculation usually involves the coefficient R = 
(IAC/IDC)red/(IAC/IDC)ir, where IAC is the peak-to-valley 
excursion of the pulsatile portion of a PPG and IDC is the 
corresponding baseline. An experimentally determined 
linear calibration curve, SpO2 (%) = a!R + b, is then 
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employed, where (a, b) is a constant-coefficient pair such as 
(–25, 110) [10].  In this paper, we redefined R as 

R(i) = {xAC (i) / IDC}red
{xAC (i) / IDC}ir

 (1) 

where xAC(i) is a red or near-infrared AC excursion at the ith 
point that is not restricted to a peak/valley point. 

B. Principle Component Analysis (PCA)  
PCA orthogonally transforms a number of correlated 

variables (observations) into a number of uncorrelated 
variables (sources). Two observations, {xAC(i)}red  and 
{xAC(i)}ir, as defined in (1), are SpO2-correlated since the IDC 
ratio is either preset or automatically adjusted based on the 
subject’s perfusion level.  

First, we define the M!N (M = 2) data matrix  

[ ]NxxxX ...21=  (2) 

where xi = [{xAC(i)}ir {xAC(i)}red]T, i = 1, 2, …, N and N is the 
number of data points acquired from each channel.  The 
differential value xAC(i) is defined as  

xAC (i) =AC(i)!AC(i+ d)  (3) 

where AC(i) is the ith point in the red or near-infrared 
channel and d is the time slot width. 

 PCA identifies the source matrix, S, with the expression 

WXS TT =  (4) 

where S = [Sppg Snoise]T holds an N-point PPG signal sequence 
(Sppg) and an N-point noise sequence (Snoise), X is the data 
matrix in (2), and W is an M!M transformation matrix.  
 The covariance method can determine W. First, calculate 
the zero empirical mean data set, B (M!N): 

B = X ! 1
N

xi
i=1

N

" #h  (5) 

where h is a 1!N vector:  h[n] = 1 for n = 1, 2, …, N. 
Next, find the empirical covariance matrix (M!M)  

C = 1
N

B !BT"  (6) 

and the eigenvectors and eigenvalues of C according to 

DCVV =!1  (7) 

where V is the M!M eigenvector matrix corresponding to the 
eigenvalues in the diagonal matrix D. Rearrange V and D 
according to decreasing eigenvalue order in D to get W = V. 
The first eigenvector in V indicates the direction of the first 
principle component, Sppg, and the orthogonal second 
eigenvector in V corresponds to the second principle 
component, Snoise.  The overall best-fit xAC ratio is the first 
eigenvector’s slope: 

(xAC )red
(xAC )ir

=
V (2,1)
V (1,1)

 (8) 

C. Optimization  
A different time delay, d, yields a different xAC ratio since 

the data in (2) change. When noise exists, not all d values 
yield a reliable xAC ratio.  For example, d = 1 equates to 
taking the derivative of the original PPG – a process that is 
sensitive to noise. The following two strategies are 
introduced to find the most reliable xAC ratio, where d is 
subject to an empirical upper bound of 100 (100/fs = 0.417 
sec time slot).  

Signal-to-Noise Energy Ratio Maximization (SNERM).  
The magnitude of each eigenvalue in matrix D represents the 
contribution of the source data’s energy along each 
eigenvector. Assuming the energy of the clean PPG signal is 
greater than the energy of the noise in the given data set, d is 
selected to maximize the SNER:  

)2,2(
)1,1(maxarg

D
Dd =  (9) 

Fig. 2 illustrates the SNERM optimization strategy used 
in this PCA analysis for the data set in Fig. 1. The simulation 
results are d = 80, SNER = 39.4, first eigenvector v1 = 
[0.8883 0.4593]T, and xAC ratio = 0.5170.    

 
Fig. 2.  PCA of a 20-second PPG data set using the optimization strategy of 
signal-to-noise energy ratio maximization (SNERM). Red circles mark the 
original peaks, and green circles mark the original valleys.  

AC Excursion Ratio Minimization (ACERM).  This 
strategy is based on the idea that the source component Sppg 
helps to discriminate (xAC)ir  from (xAC)red because the sensor 
has different responsivity at these two wavelengths.  This is 
coupled with the assumption that the source component Snoise 
imposes the same effect on (xAC)ir  and (xAC)red since, e.g., the 
same ambient noise is acquired by the sensor during the 
respective sampling events. The xAC ratio is typically less 
than 1, so d can be chosen to minimize the ratio in (8):  

)1,1(
)1,2(minarg

V
Vd =  (10) 

Fig. 3 illustrates the ACERM optimization strategy used 
in this PCA analysis for the same data set in Fig. 1. The 
simulation results are d = 68, SNER = 38.8, first eigenvector 
v1 = [0.8888 0.4585]T, and ACER or xAC ratio = 0.5155.    
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Note that no data matrix centering as in (5) is involved in 
the ACERM strategy so as to prevent an unreasonably low 
xAC ratio. If mean subtraction is not performed, the first 
principle component might instead correspond to the mean 
of the data [11]. However, the method to create the data 
matrix in (2) and (3) statistically tends toward a near-zero 
mean, as shown in Fig. 3, and the influence of a small AC 
mean on the calibration coefficient used for SpO2 estimation 
is unclear.       

 
Fig. 3.  PCA of a 20-second PPG data set using the optimization strategy of 
AC excursion ratio minimization (ACERM). Red circles mark the original 
peaks, and green circles mark the original valleys.  

D. Calibration and Agreement Analysis   
A commercial pulse oximeter was used as a standard to 

calibrate the blood oxygen saturation levels obtained from 
the coefficients determined using the approaches described 
above.  A linear calibration curve as mentioned in Section A 
was then estimated using least-squares approximation [12].  

A Bland-Altman plot is a method where data differences 
are plotted against data averages to assess the agreement 
between two methods of clinical measurement [13]. For this 
analysis, comparisons of the calibration coefficient, R, were 
accomplished by first estimating R for a given data set using 
the Fast Fourier Transform (FFT) approach (previously 
noted as reliable [5], [8]) and then calculating R for that 
same data set using each of the PCA approaches. In the FFT 
method, R was updated every 0.5 seconds using the previous 
4 seconds of data, and a median filter was applied to the 
resulting coefficient sequence. SNERM and ACERM 
optimizations were then implemented to create the 
respective Bland-Altman plots, where the R values 
determined using these PCA methods were compared 
against the corresponding FFT-determined coefficients. 
Separate data sets from 16 participants, each consisting of 40 
seconds of four raw PPG data streams, were used to evaluate 
the effectiveness of the PCA method for estimating SpO2. 

III. RESULTS AND DISCUSSION  

A. Blood Oxygen Saturation Estimation   
SpO2 levels read from a Smiths Medical BCI® 3180 pulse 

oximeter are plotted in Fig. 4 as a function of the calibration 
coefficients calculated with the custom pulse oximeter data 
using the PCA SNERM and ACERM approaches. The linear 
calibration curve for the PCA SNERM strategy is       

8.1069.18(%)SpO2 +!= R  (11) 

with a correlation coefficient, r2 = 0.77, and a standard 
deviation, !  = 0.51 (%).  The PCA ACERM curve is       

4.1072.20(%)SpO2 +!= R  (12) 

with a correlation coefficient, r2 = 0.78, and a standard 
deviation, !  = 0.50 (%).  

 
Fig. 4.  SpO2 obtained from a BCI® 3180 pulse oximeter as a function of the 
R values estimated by the PCA SNERM and ACERM approaches. The 
SNERM linear regression line (blue dashed line) is SpO2 (%) = –18.9R + 
106.8, and the ACERM line (red solid line) is SpO2 (%) = –20.2R + 107.4. 

B. Blood Oxygen Saturation Agreement   
The limits of agreement during Bland-Altman analysis are 

specified as a mean difference (bias) ±1.96 standard 
deviations of the difference.  As noted in Fig. 5, the 
agreement between 16 pairs of R estimates as calculated by 
the FFT method versus the PCA SNERM approach (blue 
circle, dashed line) is specified by a bias of –0.0109 with 
agreement limits of –0.0564 to 0.0345. The agreement of the 

 
Fig. 5.  Bland-Altman plots that note the agreement between 16 pairs of R 
values calculated with the FFT, PCA SNERM, and PCA ACERM methods.   
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FFT method versus the PCA ACERM approach (red ‘!’, 
solid line) is specified by a bias of 0.0066 with agreement 
limits of –0.0508 to 0.0376.  

A strong agreement between the FFT approach and the 
two PCA approaches was achieved. For instance, using (11) 
as the calibration curve, the difference in SpO2 percentage is 
ensured to be less than 1.07% (18.9!0.0564) between the 
FFT and SNERM methods. ACERM yields a 40% smaller 
bias and a 3% narrower limit range as compared to SNERM, 
consistent with the calibration results (higher r2 and lower 
!).   

C. Signal Segmentation for Improved SpO2 Estimation    
Fig. 6 depicts a 20-second data set with partial corruption 

(segment A). An initial assessment of PCA resistance to the 
presence of noise was disappointing. This is intuitively 
reasonable because the limited PPG data present, e.g., in 
segment A make it impossible to ‘create’ an SpO2 indicator 
by linearly combining the data sequences ACred and ACir. 

 
Fig. 6.  Twenty seconds of four-channel PPG data segmented into partially 
corrupted (A) and usable (B) data (transition time:  4.5 sec).  

However, it is possible to separate, e.g., the corrupted 
segment A from the remaining valid data once PCA is 
performed, as illustrated in Fig. 7. Further separation can be 
done in segment A according to the signal saturation state:  
the data were not preprocessed with (3) to make the 
saturated signal more distinguishable. By culling segment A 
from the 20-second data set, the initial eigenvector v1 = 

[0.6932 0.7207]T becomes [0.8767 0.4810]T, yielding a more 
reasonable SpO2 estimate. Automatic segmentation based on 
PCA plots/results and the associated marking of the original 
time-domain waveforms will be future work.   

IV. CONCLUSION  
This paper presented an approach to optimize the 

calculation of pulse oximeter SpO2 values by performing 
PCA on the unfiltered pulsatile PPG data, where the PCA 
method separates the signal source from the noise source.  
Two effective strategies are presented to improve the 
calculation of the conversion coefficient, R, by optimizing 
the time interval over which these calculations are made, 
taking advantage of the eigenvalues/eigenvectors ascertained 
during PCA.  These R values are sensible when compared to 
R values from FFT-based approaches. The PCA results 
demonstrate resilience to noise and promise to segment 
noise-corrupted PPG data from clean PPG data. The PCA 
method can also be applied to an M > 2 condition, e.g., for a 
CO-oximeter. 
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Fig. 7.  PCA on the PPG data from Fig. 6:  noise-corrupted segment A (!) 
and clean segment B (").  
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