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Abstract—The Timed Up and Go is a clinical test to assess 

mobility in the elderly and in Parkinson’s disease. Lately 

instrumented versions of the test are being considered, where 

inertial sensors assess motion. To improve the pervasiveness, 

ease of use, and cost, we consider a smartphone’s accelerometer 

as the measurement system. Several parameters (usually highly 

correlated) can be computed from the signals recorded during 

the test. To avoid redundancy and obtain the features that are 

most sensitive to the locomotor performance, a dimensionality 

reduction was performed through principal component analysis 

(PCA). Forty-nine healthy subjects of different ages were 

tested. PCA was performed to extract new features (principal 

components) which are not redundant combinations of the 

original parameters and account for most of the data 

variability. They can be useful for exploratory analysis and 

outlier detection. Then, a reduced set of the original parameters 

was selected through correlation analysis with the principal 

components. This set could be recommended for studies based 

on healthy adults. The proposed procedure could be used as a 

first-level feature selection in classification studies (i.e. healthy-

Parkinson’s disease, fallers-non fallers) and could allow, in the 

future, a complete system for movement analysis to be 

incorporated in a smartphone. 

  

I. INTRODUCTION 

HE Timed Up and Go (TUG) is one of the most used 

clinical tests to assess balance, mobility, and fall risk in 

the elderly [1] and in pathologies such as Parkinson’s disease 

[2], [3]. In this test the subject is asked to stand up from a 

chair, walk, turn, walk back, and sit down again. The 

traditional measured outcome of this test is its duration. 

Lately instrumented versions of the test are being considered 

[2], [3] where inertial sensors are used to quantitatively 

assess the characteristics of motion. Nowadays smartphones 

embed a large suite of sensors, including accelerometers. For 

this reason we evaluate the use of a smartphone’s 

accelerometer as the measurement system for an 

instrumented Timed Up and Go (iTUG). This could favor a 

better pervasiveness, by keeping competitive the ease of use 

and the cost of the test. Moreover, as a future development, 

one could envision that a complete solution for quantitative 

TUG analysis, together with other instrumented motor tasks, 

could be incorporated in the smartphone as an app.  

A very high number of parameters can be computed from 

the iTUG signals [2], [3]. Many of these parameters are 
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highly correlated with each other (i.e. they represent similar 

locomotor aspects) [4]. In redundant datasets, it is desirable 

to have a reduced set of features which represent only useful 

information. Reducing the number of features can aid in the 

interpretation of the results. For classification purposes (e.g. 

fallers-non fallers; healthy-Parkinson’s disease patients) it is 

also desirable to have a small subset of parameters (feature 

selection) to avoid the so-called “curse of dimensionality”: 

the difficulty for classifiers to learn effective models when 

the number of features is high and the number of samples is 

limited. High dimensionality may lead to the overfitting of 

the classification algorithm in the considered dataset. The 

aim of this study is to identify the subset of parameters that 

are most sensitive to the locomotor performance of healthy 

adults, avoiding redundancy. The principal component 

analysis (PCA) [5] is used to extract a reduced set of non-

redundant features (principal components, PCs) which are 

linear combinations of the original parameters. These new 

features can be useful for the purpose of exploratory analysis 

and outlier detection (which will be discussed later on). 

Then, from these PCs, a reduced set of the original 

parameters is obtained through correlation analysis.  

II. METHODS 

A. Subjects 

In total 49 healthy adult subjects of different ages (range: 

28-87; average: 58.9±16.5), were recruited by their general 

practitioner. All subjects gave written informed consent prior 

to participation. The tests were done in a clinical setting (the 

doctor’s office) with the supervision of the general 

practitioner, who excluded subjects with motor impairments 

from the study. The age distribution of the subjects was: 8 

subjects ≤ 40 years; 8 subjects in the range 40-50 years; 11 

subjects in the range 50-60 years; 7 subjects in the range 60-

70 years; 11 subjects  in the range 70-80 years; 4 subjects ≥ 

80 years. 

B. Test 

As seen in Fig. 1, the iTUG test consists of standing up 

from a chair (Sit-to-Stand section), walking 7m at preferred 

speed, turning around, walking back to the chair and sitting 

down again (Stand-to-Sit section). The Gait section starts 

after the Sit-to-Stand and ends before the Stand-to-Sit. The 

iTUG is a modified version of the traditional TUG with a 

longer distance to walk (7m instead of 3m), which was 

proposed by [2] to provide enough steps for gait analysis. 

Dimensionality Reduction for the Quantitative Evaluation of a 

Smartphone-based Timed Up and Go Test 

Luca Palmerini, Sabato Mellone, Laura Rocchi, Lorenzo Chiari 

T 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 7179

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

 

C. Measurement System 

To instrument the iTUG we used the accelerometer 

embedded in the HTC Desire smartphone (Operative system: 

Android 2.1). It is the BMA150 tri-axial accelerometer, 

which has a range of ± 2g, a sample frequency of 50 Hz, and 

a sensitivity of 4 mg. The smartphone was worn by the 

subjects on the lower back by means of an elastic belt. The 

position was chosen according to recent studies which found 

the trunk position to provide reliable accelerometer signals in 

standing and gait tests [6], [7]. Custom software was 

developed to manage the sensor inside the smartphone: 

Android Software Development Kit was used for this 

purpose. 

D. Parameter Computation 

The accelerations along the two orthogonal axes of the 

accelerometer were considered: the first aligned with the 

direction of gait progression and coincident with the 

biomechanical antero-posterior (AP) axis of the body; the 

second coincident with the medio-lateral (ML) axis of the 

body.  

Three different sections of the iTUG (Sit-to-Stand, Gait, 

Stand-to-Sit) were segmented from the whole recording as in 

[3]. In Fig. 2 there is a representative example of the raw AP 

acceleration of a representative subject, with the resulting 

segmentation. Twenty-eight parameters were computed from 

the acceleration signals in the different sections of the iTUG 

(Sit-to-Stand, Gait, Stand-to-Sit).  

Three temporal parameters were computed by considering 

the total duration of the test, the duration of the Sit-to-Stand 

and of the Gait sections.  

In the Sit-to-Stand section the root mean square value 

(RMS) and Jerk score of the accelerations were computed 

along AP and ML directions. The preparatory phase of Sit-

To-Stand was also considered by computing the RMS and 

Jerk score values of the AP signals before the start of the 

standing. 

In the Gait section, step duration was computed by 

identifying heel strikes, as in [8]; step duration was 

computed for each step but for the following analysis only 

the mean, the standard deviation (STD) and the coefficient of 

variation (CV) of the step duration across all the steps were 

considered. We defined a gait cycle as the time between one 

heel strike and the consecutive heel strike of the same leg; 

the interval between the start of a gait cycle and the time 

when the other leg’s heel strike occurs, normalized to the 

gait cycle duration, is defined as the phase [4]. Six 

parameters were considered related to the gait phase: mean, 

STD, CV across steps, absolute phase, STD of the absolute 

phase and phase coordination index (PCI). All of these are 

reported in [4]. Among them, PCI measures the gait 

symmetry. Normalized Jerk score (NJS) was computed as an 

index of movement smoothness for each step [9], both in the 

AP, ML and planar direction. Mean, STD, and CV across all 

the steps were considered for the analysis. 

In the Stand-to-Sit section the maximum AP acceleration 

was considered.  

In total 28 parameters were computed from the signals. 

E. Principal Component Analysis 

The PCA procedure was applied to the computed 

parameters. The correlation matrix (instead of the covariance 

matrix) was used to estimate the PCs, because the parameters 

were very different in scales and variance [5]. To determine 

the number of PCs that should be kept for further analysis, 

we chose to retain just enough PCs to account for a 

determined percentage of the data variation [5]. In the 

present study, we chose the number of PCs that accounted 

for at least 90% of the total variance. The number m of PCs 

considered defines the dimension of the reduced dataset. The 

first m PCs define a new co-ordinate system, and each 

subject is identified by new co-ordinates in this m-

dimension. 

After the PCA was completed, a Pearson’s correlation 

 
Fig. 1.  Schematic representation of the instrumented Timed Up and 

Go test: the subject stands up from a chair, walks for 7m, turns 

around, walks back, and sits down again. 

 

 
Fig 2. Raw AP acceleration and resulting segmentation of a 

representative subject of the study, who is 37 years old. 
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analysis was performed to identify the original parameters 

that are most descriptive of each PC. We chose the 

correlation analysis among several possible criteria, which 

associates with each of the m PCs, the original parameters 

that correlates most with the PC itself, as in [10]. This 

procedure aimed at making the m PCs more interpretable (by 

understanding which are the parameters that most determine 

each PC), and at selecting a reduced set of the original 

parameters which can describe most of the variability of the 

motion data with low redundancy.  

Matlab R2009b was used for the principal component 

analysis and for the correlation analysis. 

 

III. RESULTS 

Ten PCs are enough to account for more than 90% of the 

variance of the original data. The first PC (PC1), which 

accounts for the 33% of the variance, is characterized mostly 

by the STD of step duration: its correlation with PC1 is very 

high (R=0.93). Also all the phase-related parameters are 

highly (0.4<|R|<0.9) correlated with PC1 (mean phase, STD 

and CV of the phase, absolute phase, STD of the absolute 

phase and PCI). Since these parameters are also highly 

correlated with each other, we will consider only PCI among 

them because it is the one which shows the highest 

correlation (R=0.88) with PC1. This is done to avoid 

unnecessary redundancy. Duration of the Sit-to-Stand is also 

highly correlated with PC1 (R=0.58). Therefore PC1 

simultaneously represents the variability and symmetry of the 

steps and the duration of the Sit-to-Stand. Based on the signs 

of the correlations, subjects with high values of this PC tend 

to have steps that are different from each other, low gait 

symmetry, and a long time to perform the Sit-to-Stand. 

The second PC (PC2) is characterized by parameters from 

all the sections: the mean step duration (R=0.75) during Gait; 

AP and ML Jerk scores (R=-0.59 and R=-0.57, respectively) 

during Sit-to-Stand; the maximum AP acceleration (R=-0.4) 

during Stand-to-Sit. PC2 represents global characteristics of 

motion: subjects with high values of this PC tend to have 

slow steps, smooth movements (with low variability) during 

Sit-to-Stand and a slower sitting process. These first two PCs 

account for almost the 50% of the variance of the original 

parameters (47.3%).  

Repeating this correlation analysis for the remaining eight 

PCs leads to a reduced set of twelve original parameters 

which are highly correlated with at least one PC. These 

parameters are: Duration, RMS AP, Jerk AP, Jerk ML, and  

preparatory RMS AP for the Sit-to-Stand section; mean and 

STD of step duration, PCI, mean phase, mean NJS AP and 

CV of NJS ML for the Gait section; maximum value of AP 

acceleration for the Stand-to-Sit section. They are reported in 

Table I. 

IV. DISCUSSION 

First, a set of ten principal components (linear 

combinations of the 28 original parameters) were extracted, 

which can explain most of the variability of the original data. 

Second, in order to obtain a result appropriate for clinical 

purposes (i.e. without introducing new and possibly 

misleading variables), a reduced set of twelve original 

parameters was selected through correlation analysis with the 

principal components. 

These two results could be useful for two different kinds 

of applications. 

The reduced-dimensional system of the principal 

components could be used for explorative analysis and 

outlier detection. In Fig. 3 we plot the subjects’ samples 

along the first two PCs. Since each PC embeds different 

characteristics (different parameters), we can have a 

summary view of more than one property in only one 

dimension. This can be useful for clustering subjects with the 

same behavior and to detect outlier subjects, which have a 

locomotor performance very different from the average. A 

TABLE I 

ORIGINAL PARAMETERS WHICH ARE HIGHLY CORRELATED WITH THE 

FIRST TEN PRINCIPAL COMPONENTS 

Parameter Section 
PCs they 

correlate with 

Duration 

RMS AP 

Sit-to-Stand 

Sit-to-Stand 

1 

4 

Jerk AP 

Jerk ML 

preparatory RMS AP 

mean step duration 

Sit-to-Stand 

Sit-to-Stand 

Sit-to-Stand 

Gait 

2 

2, 4 

5, 6 

2 

STD of step duration 

PCI 

mean phase 

Gait 

Gait 

Gait 

1 

1 

3 

mean NJS AP Gait 8 

CV of NJS ML Gait 5 

Maximum value of acceleration Stand-to-Sit 7 

 

 
Fig. 3.  2-d Plot of the first two PCs. Each sample is a subject. Outlier 

subjects are highlighted with a circle. 
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possible application of outlier detection could be fall risk 

assessment. Just as an example, in Fig. 3 it can be seen that 

there are 5 subjects that have the typical characteristics of 

outliers (extreme values, far from average); in a possible fall 

risk application those subjects would be considered with a 

motor pattern far from normal and therefore at a higher risk 

of falling. Obviously, because of the small sample 

considered, the absence of motor impairments in the 

considered subjects, and the almost uniform distribution of 

age in our data set, we cannot conclude that the subjects 

highlighted in the plot have a motor pattern which is 

significantly different from the normal one. However, it has 

to be noted that, even if principal component analysis was 

not made to discriminate between different ages, these 

“outliers” all belong to elderly subjects (≥ 65 years old), who 

are the most probable to show extreme values in motor 

patterns (because of effects of aging in the motor function).  

The second result is a reduced set of original parameters 

that could be used as a first step for feature selection aimed 

at the classification between two different populations of 

subjects (e.g., healthy and Parkinson’s disease, fallers and 

non-fallers). It is worth mentioning that in the case of 

considering different populations, the same selection 

procedure based on PCA could result in a different reduced 

subset. Future work will allow us to define a minimum set of 

parameters that would be recommended for specific 

populations. 

In a classification perspective, after this PCA-based 

feature selection, different parameter combinations from the 

reduced set can be tried and compared based on their 

classification performance.  This can be useful both to speed 

up the whole classification procedure (exhaustive search of 

the best combination of parameters can be computationally 

unfeasible) and to avoid overfitting (a “more variables than 

samples” situation). 

The lack of comparison with a gold standard is a limit of 

the present study, which can be overcome by future 

experiments. 

V. CONCLUSION 

Nowadays smartphones embed a large set of sensors 

which enable a wide variety of sensing possibilities. In this 

study a smartphone was used to instrument a well-known 

clinical test. Dimensionality reduction was performed to 

reduce the computational time and resources needed for 

parameter computation, to simplify exploratory analysis, to 

have a first-level feature selection that could be used in 

future classification studies. These results will help in the 

perspective of incorporating a complete solution for 

quantitative movement analysis directly in the smartphone. 
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