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Abstract— This paper provides a comparison of several blind
source separation (BSS) techniques as they are applied to EEG
signals. Specifically, this work focuses on the P300 speller
paradigm and assesses the classification accuracies for the
identification of P300 trials. Previous work has shown that
BSS methods such as independent component analysis (ICA)
are useful in extracting the P300 source information from the
background noise, increasing the classification rates. ICA will
be compared with two other BSS methods, maximum noise
fraction (MNF) and principal component analysis (PCA). In
addition to this, we will analyze the effect of adding temporal
information to the original data, which allows these BSS
algorithms to find more complex spatio-temporal patterns.

I. INTRODUCTION

The field of brain-computer interfaces (BCI) has emerged

from the desire for new assistive technology, targeted at

patients who are paralyzed and have lost all means of

communication. The goal of a BCI is to establish a commu-

nication channel directly from the user’s brain signals to the

computer. We focus only on non-invasive recording methods

using electroencephalography (EEG). Since the electrical

signals must pass through the scalp, EEG data are inherently

noisy, which presents many challenges for signal processing

and classification.

The approaches for BCIs can be grouped into two cate-

gories. In the first category, the user switches between a small

set of mental tasks, where each mental task is associated with

a specific action. The most commonly used tasks are motor

imagery, such as imagining a specific hand or foot moving.

The second category, which this paper focuses on, uses

evoked responses from external stimuli that are presented

to the user. The user focuses their attention on a specific

stimulus that elicits an event-related potential (ERP) in the

EEG. The computer then detects this ERP to determine the

user’s desired action.

One of the more well studied ERPs is the P300 response

that is elicited through the ‘oddball’ paradigm. Here, repeated

stimuli are presented to the user that are either target or

non-target, in which the targets must be displayed relatively

infrequently. Each time the rare target stimulus is presented,

a P300 response is produced in the user’s EEG. Farwell and

Donchin first incorporated this into a BCI called the P300

speller [1], which allows the user to type a single letter at

a time. A grid of letters is displayed to the user with the
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rows and columns flashing in a random order eight times

a second. The user focuses on the target letter that they

wish to type, and each time it flashes, a P300 response is

elicited. Therefore, the detection of the P300 response allows

the system to locate the desired target letter.

Although the P300 speller has been studied extensively, a

recent review of the field by Mak et al. [2] concludes that

more work is still needed to optimize the speed, accuracy,

and consistency before the P300 speller is practical to use

with disabled patients. One of the main challenges of P300

classification is the low signal-to-noise ratio (SNR), which

is usually overcome by averaging together many subsequent

trials. However, this decreases the communication rate, and

it is therefore desirable to find methods that can extract the

true source information from the noise. The current goal of

P300 research is to reliably detect P300s using fewer and

fewer averaged trials, with the eventual goal of single-trial

classification.

Although research from Xu et al. [3] and Li et al. [4]

has shown that the application of ICA can improve the

P300 classification accuracy, the literature lacks comparative

studies of ICA to other preprocessing methods when it

is applied to the P300 identification problem. Here, we

will present an analysis comparing ICA, MNF, and PCA.

Previous work has shown MNF to be effective at removing

artifacts from EEG, but it has never been applied to P300

classification before.

The second contribution of this paper is to study the

effects of time embedding by adding lags to the data, thereby

allowing these methods to find linear spatio-temporal filters,

rather than purely spatial filters. If we consider that the

original data at a single time sample consists of purely

spatial information, adding lags to this data will increase

the dimensionality, effectively augmenting the original data

with temporal information. These methods will be compared

to the standard BSS methods that do not use time embedded

data.

II. RELATED WORK

Blind source separation (BSS) methods work under the

assumption that the observed signals from a multi-channel

recording are produced from a mixture of several distinct

source signals. In the context of EEG recordings, many

distinct brain sources are believed to contribute to the over-

all signal. Makeig et al. [5] find that ERP responses are

comprised of several distinct and spatially independent brain

processes. Since the electrodes are spatially distributed across

the scalp, each electrode picks up a combination of these
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different brain processes, resulting in the observed signals.

BSS methods attempt to transform the observed data into a

set of original source signals.

BSS methods like ICA and PCA have been used for

artifact removal by Jung et al. [6], which works well because

artifacts are usually very strong sources relative to the

ongoing brain activity. Maximum noise fraction (MNF) is

a relatively new method introduced by Hundley and Kirby

[7] that has also been shown to perform well when separating

artifacts from the EEG [8], [9].

ICA has been used on P300 trials [3], [4] and shown to

improve classification accuracies. Xu et al. [3] used a priori

information about the spatial and temporal characteristics

of the standard P300 response to select the most relevant

components, whereas Li et al. [4] used an a posteriori

template matching technique.

Since traditional ICA (referred to here as spatial ICA)

must be used on multi-channel recordings, it is not possible

to use with only a single channel. However, Davies and

James [10] introduced the concept of single channel ICA

that utilizes time embedded data. Time embedded data uses

the data from the same channel lagged by one time sample

to introduce a new dimension, essentially creating a new

‘channel.’ When only using a single channel with lagged

data, ICA produces components which are a linear mixture of

the lagged time samples, thereby creating a purely temporal

filter. The authors applied single channel ICA to ictal EEG

recordings [10] and P300 recordings [11] to find that it is

able to successfully separate out the sources. Quantitative

analysis showed that it is still inferior to spatial ICA, which

is expected since more data is available from a multi-

channel recording. James et al. further extend this idea to

create spatio-temporal ICA [12] that uses time-embedded

data from multi-channel EEG recordings to obtain a set

of source components derived from spatio-temporal filters.

These results show that spatio-temporal ICA is able to better

isolate the ictal activity than traditional spatial ICA.

III. METHODS

A. Datasets

Dataset A is taken from the BCI Competition III, dataset

II [13], which is a P300 dataset obtained using the speller

paradigm as described by Farwell and Donchin [1]. Although

there are two subjects, only the results from Subject A are

shown here due to space limitations. The dataset contains

2550 target trials. It was recorded using a 64-electrode cap,

although only 8 channels are used in these experiments (Fz,

Cz, Pz, Oz, P3, P4, PO7, PO8), which was shown to be

sufficient by Krusienski et al. [14]. The data were sampled

at 240 Hz and decimated by a factor of 2.

Dataset B was recorded at the Colorado State University

Occupational Therapy lab using the Biosemi active electrode

system. The paradigm for this study consisted of flashing

letters where the letter in the middle of the screen changed

each time it flashed. The subject was asked to count the

occurrences of a specific target letter with a probability of

occurrence of 0.25. A total of 540 target trials were collected.

The data were recorded with a 32-electrode cap, but again

only 8 channels were used (Fz, Cz, Pz, Oz, P3, P4, PO3,

PO4). The data were sampled at 1024 Hz and decimated by

a factor of 8.

Both datasets were bandpassed from 0.23 Hz to 30 Hz.

The trials consisted of exactly one second of data after

the stimulus onset. The single trials from each class were

grouped together and 5 subsequent trials were averaged

together to make up one trial in the training data. Both the

training and testing sets were balanced, such that only a

subset of the non-target trials were selected to match the

number of target trials. For each experiment, the trials were

randomly partitioned into training, validation, and test sets

with a fraction of 0.3, 0.3, and 0.4, respectively, ensuring

that the same random partition was used when comparing

between methods.

B. Blind Source Separation

One of the three methods, ICA, MNF, or PCA, was applied

to the training data (with or without lags) to produce the

source components. Data from both target and non-target tri-

als in the training set were alternately concatenated together

to produce the continuous time-series signal that BSS was

applied to. With each of these methods, the number of source

components is equal to the number of input dimensions.

Using n channels, this produces n source components with

spatial BSS and nd source components if using spatio-

temporal BSS with d lagged dimensions. The most relevant

components were then selected using the feature selection

algorithm described below.

PCA is a commonly used method based on the singular

value decomposition (SVD) that is many times used for

preprocessing and dimensionality reduction. However, we

use it here to extract source components from the data

channels. ICA is a well known BSS concept that maximizes

statistical independence, and we use the FastICA algorithm

here [15]. We will not describe these two methods due to

space limitations.

1) Maximum Noise Fraction: MNF is a BSS technique

[7] that attempts to decompose the signal into source and

noise components, based on the assumption that the observed

signal X is created by a combination of sources S and noise

N , as in X = S + N . The algorithm works to optimize

the SNR as shown here, where α designates the eigenvector

components:

SNR = max
α6=0

‖Sα‖

‖Nα‖
= max

α6=0

‖Xα‖

‖Nα‖
= max

α6=0

αT XT Xα

αT NT Nα

This equation is only equivalent if the signal and noise

are assumed to be orthogonal (ST N = 0). Since the sample

covariance XT X can be easily computed from the input

data X , only the noise covariance NT N is unknown. The

noise covariance is characterized by the covariance of the

difference of the original signal with the same signal shifted

by one time sample. This characterizes the noise as large

fluctuations from one sample to the next, or essentially the

higher frequency components.
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C. Time Embedded Data

As mentioned above, time embedded data is created by

adding a new lagged dimension. This is the same data from

one of the original channels, only shifted (or lagged) by one

time sample. After the source components are found with

the BSS method, it is possible to project these components

back to the original data space as described in [10]. Since

each source component contributes to the recorded signal, it

is possible to reconstitute the original data by projecting all

components back to the original data space and summing

them together. Therefore, it is necessary to select only a

subset of these components to use. For the feature selection

step, each component is projected separately in order for the

algorithm to determine the most relevant components.

D. Feature Selection

The feature selection algorithm used here is based on the

ANOVA statistical test. It was applied to all features using in-

stances from two groups, target and non-target instances from

the training set. The features are individual time samples

from the projected time series of each component, and the

ANOVA scores were averaged across all features associated

with each component. The averaged ANOVA scores were

then used to rank all of the components based on relevance.

This way, the feature selection algorithm does not make any

assumptions about the components and ranks them based on

statistical differences of the associated features.

It is then necessary to determine the optimal number of

top ranked components to use. The training set was used

to train a support vector machine (SVM) with a Gaussian

kernel, and a separate validation set was used to assess the

accuracy. We used the top n ranked components, as n varied

from 1 to a preset maximum of 20, to find the n that resulted

in the highest validation accuracy. Thus, the top n ranked

components were selected to be used for the final transform.

If time embedded data is used, the final n components are

projected back and summed together in the original data

space.

After finding the resulting linear transform, it was applied

to the training data before training the final SVM model.

In order to create a single sample for the SVM, we created

a feature vector consisting of all time samples in the one

second window from each of the eight channels. Once the

SVM was trained, the same linear transform was applied to

the unseen test data before it was classified with the SVM.

IV. RESULTS

The results for each of the spatial BSS methods are

compared with those of classifying on the original data

in Figure 1. It should be noted that the ANOVA feature

selection algorithm was still applied to the original data for

channel selection. These results are shown as the number of

averages in the test dataset increases from 1 to 15.

The results in Figure 2 show the effect of adding lagged

dimensions to the data, increasing from 0 to 15. When

the number of lags is equal to 0, the original data is

used, resulting in the traditional spatial versions of the BSS
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(b) Results on Dataset B

Fig. 1. This plot shows how the three BSS methods compare to classifying
on the original untransformed data.

methods. The spatio-temporal versions of the BSS methods

are used when the number of lags is greater than 0, and as

the number of lags increases, the number of resulting source

components also increases. Since lags are not added to the

original data unless a BSS method is applied, the accuracy on

the original data is unchanged as the number of lags varies

and is shown by a flat line. Although the results here are

only shown for single trial classification on the test set, the

trends are almost identical as the number of averaged trials

increases.

V. DISCUSSION

First, it is important to point out that the BSS methods did

improve the classification accuracy over using the original

data. It is helpful to remember that the motivation for

improving the accuracy is to reduce the number of averaged

trials required. If we strive for a minimum accuracy of 0.85,

we can look at where the curves intersect this point in Figure

1. In Dataset A, the application of one of the BSS methods

would achieve this minimum accuracy with only 7 averaged

trials, rather than 10 averaged trials if using the original data.

Dataset B shows a reduction from 6 averaged trials down to

4. The results from Subject B in Dataset A (not shown) are

similar, and the number of averaged trials can be reduced

from 6 down to 4.

However, when comparing the three BSS methods, there is

no distinguishable difference. This is interesting because ICA

has become a well studied EEG signal processing technique

in the BCI field, and is the most complex method of the
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Fig. 2. This plot shows the effects of adding lagged dimensions to the
original multi-channel data before applying one of the BSS methods. Here,
the baseline performance of the original data is flat because it always uses
0 lags if no BSS algorithm is applied. The results here are shown for single
trial classification.

three, utilizing higher-order statistics rather than second-

order statistics. These results suggest that ICA does not

gain any advantages over the relatively simple methods of

PCA and MNF. The computation times of the BSS methods

provide some insight into the relative complexities of the

algorithms. PCA is the simplest method with the shortest

computation time. The computation time for MNF is an order

of magnitude larger than for PCA, and the computation time

for ICA is two orders of magnitude larger than for PCA.

When looking at Figure 2, it is clear to see that adding

lags does not improve the classification accuracy. It is also

interesting to see that the performance of the spatio-temporal

BSS methods are now clearly separated. The results from

Subject B in Dataset A also show a similar separation of

the three BSS methods. Although none of them improve

with lags, the performance of MNF remains relatively stable,

whereas ICA and PCA do worse. This suggests that the

additional temporal information is irrelevant. We believe

that the problem becomes too complex for any of these

algorithms to handle the spatio-temporal information.

VI. CONCLUSIONS AND FUTURE WORK

As shown by our results, for the problem of P300 classifi-

cation, it does not appear that ICA shows any clear advantage

over the simpler methods of PCA and MNF. The addition

of temporal information with time embedded data reduces

the classification accuracy. However, it is clear that all three

spatial BSS methods improve the classification accuracy over

using the original data. This allows the P300 speller to

accurately classify target trials using fewer averages, thereby

increasing the communication rate.

Future work consists of running experiments with more

datasets and subjects. We are also currently looking at other

feature selection algorithms. We are currently investigating

the causes behind the differences between the three spatio-

temporal versions of the BSS methods. Also, since the spatial

BSS methods clearly show an improvement, we will look at

how this is changed by expanding the number of electrodes

beyond the current subset of eight.
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