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Abstract—This paper describes a method to efficiently 
sample EMG recruitment space over a wide range of pulse 
amplitude (PA) and pulse width (PW). A gradient based search 
method is developed to find high information areas of a 
recruitment surface. This search method is first examined in 
the context of simulated EMG recruitment data and its ability 
to sample and subsequently fit Gompertz-Function-inspired 
surfaces to it. The search method is then used to determine 
parameters when stimulating through an 8 contact flat 
interface nerve electrode (FINE). The recorded EMG 
recruitment data are then used to validate the Gompertz 
surface fitting method as well as the search method. 

I. INTRODUCTION 

HE aim of a functional electrical stimulation (FES) 
system is to restore or improve the function of 

individuals with neurological compromise, especially those 
with upper motor neuron (UMN) involvement.  FES has 
been shown to be effective in restoring basic lower 
extremity motor function in individuals with stroke or spinal 
cord injury [1]. In the past, stimulation at the femoral nerve 
using the flat interface nerve electrode (FINE) has been 
shown to be effective in recruiting muscles in a selective 
fashion [2]. This muscle selectivity is important to stimulate 
the proper muscles during different phases of gait and also 
to delay fatigue by alternating stimulation of functionally 
synergistic muscles [3]. To test the efficacy of nerve cuffs 
prior to implantation, intraoperative testing has been 
performed on patients while recording recruitment of 
muscles using electromyography (EMG) [2]. As the number 
of contacts on a cuff increases, stimulation can better 
activate the desired muscles without recruiting unwanted 
ones that would be counter-productive to the intended 
movement [4], but it also becomes more time consuming to 
discover the best stimulation parameters--in this case, pulse 
amplitude (PA) and pulse width (PW)--to achieve this 
selectivity. Thus, it is important to intelligently choose 
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which parameter sets to use in intraoperative testing as the 
number of stimulating contacts increases.  

Previous methods to find nerve stimulation parameters 
generally focus on recording EMG recruitment along one 
dimension at a time (often modulating PW at a set PA) [5].  
Here, we examine search methods of stimulation parameters 
across the full space of both PA and PW.  As well, we 
explore the validity of fitting Gompertz-Function-inspired 
surfaces to EMG response data to predict muscle responses 
to any set of stimulation parameters. These Gompertz 
surfaces are tested by fitting and validating using separate 
EMG datasets elicited after bilateral stimulation of proximal 
femoral nerves. Together, these methods can gather data 
efficiently to allow for more effective testing of nerve cuffs 
to be used for restoration of function after UMN injury. 

II. METHODS 

The process we explore for efficiently determining nerve 
stimulation parameters starts with simulating EMG 
recruitment surfaces. These surfaces are used to test the 
efficiency of methods to collect data points which provide 
information about the shape of the surfaces. These points are 
then validated against the simulated dataset by fitting a 
surface to the sampled points and calculating the coefficient 
of determination (R2) over the full simulated space (Matlab, 
Natick, MA). After determining the efficiency of this 
process, the search method was used to characterize EMG 
recruitment over PA and PW during the acute application of 
a FINE to the bilateral proximal femoral nerves. To validate 
the surface fitting procedure and thus the search method 
described below, the EMG recruitment data were randomly 
divided into separate datasets for surface fitting and testing. 

A. Surface Creation  
The primary set of simulated EMG recruitment surfaces 

were modeled as an analogy to a Gompertz function. The 
Gompertz function is often used to model population 
growth, for instance, in tumors [6].  It is appealing to use 
this function to describe the recruitment of a population of 
axons. As well, the Gompertz function was chosen since it 
has been shown to fit human EMG recruitment data well 
along a single dimension (pulse amplitude modulation or 
pulse width modulation) [7].  The Gompertz surfaces were 
created based on 5 parameters: A, to control overall 
amplitude, B to control shifting of the curve along PA or 
PW, and three variables (CPA, CPW, CPAPW) to control the rate 
of rise in each the direction of PA, PW, and the product of 
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PA and PW. The form of the surface follows: 

( )PA PW PAPWA W A WC P C P C P PBeAe
 

 . (1) 
 

The 5 parameters used in Eq. 1 were varied independently 
of each other for each surface created based on separate 
independent uniform distributions. Some parameters could 
vary from approximately ten-fold (for instance, A) to one-
hundred-fold (CPA) or more (B) so that the surfaces produced 
would rise at values of (PA, PW) that covered the full space 
available. The parameters controlling rise were all negative, 
as was B, while A was always positive. The function used a 
sum of parameters in the second exponent as this was 
required to control rise of the sigmoid independently along 
PA, PW, and their product across the space of PA and PW. 

To ensure robust behavior with expected EMG signals, 
noise was added to all simulated surfaces. The added noise 
was Gaussian with a mean of zero and a standard deviation 
ranging from 0.01 to 0.2 of the maximum simulated EMG 
value. To ensure further robustness, search and fit methods 
were also tested against surfaces that were created only with 
the assumption that they must be monotonically increasing 
in PA and PW. These surfaces were created by randomly 
increasing recruitment with each step in PA or PW. 

B. Search Methods 

The pulse space search method aims to isolate areas with 
a high gradient and to cover all values between a 
predetermined high (0.9) and low (0.1) thresholds, which are 
normalized to the highest point on the surface. Thus, density 
of search points positively correlates to the gradient of the 
surface. In addition, if there is a large change in recruitment 

values between any two PA, PW pairs, the algorithm will 
explore the recruitment values at PA and PW values between 
the original PA, PW pair. 

The search is conducted as follows. First the value of the 
surface at maximum PA and PW is found. Second, the 
search starts at the highest value in PA and the lowest value 
in PW. If the surface at this point is below lower threshold, a 
recruitment curve is searched along PW at the current value 
in PA. The rate of movement along this curve depends on 
the gradient found from the previous two sampled points 
such that points are sampled more closely when gradients 
are higher.  This local search stops when all muscles’ EMG 
data is above upper threshold. Conversely, if the lower 
threshold was not passed, PA is lowered until the criterion is 
met and then a curve is found along PW at a lower PA. 
Third, PA is again lowered for another search along PW. 
This search begins at the PW where upper threshold was 
passed on the previous curve (it is assumed that at lower PA 
the point will likely be below upper threshold) and occurs 
both in increasing and decreasing directions to pass upper 
and lower thresholds, respectively. This repeats until two 
curves are produced. Fourth, the local searches are repeated 
in the opposite direction (starting at high PW and low PA to 
create curves that search along PW). Figure 1 illustrates an 
example of the results of this process and shows that points 
are closer together where the surface rises steeply. 

The pulse space search method was compared to a method 
of collecting samples consisting of a predefined grid over 
the space of PA and PW. This method requires minimal 
computational overhead but is unable to increase resolution 
in specific areas as needed. 

C. Surface Fitting 

Search methods were evaluated by how well they 
provided points to fit a surface to the simulated EMG data. 
This was compared using the calculated R2 between the 
simulated surface and the fitted surface across every defined 
point (all PA and all PW) in the recruitment surface space.  

During each fit iteration, the R2 value for the points 
sampled by the algorithm was calculated. If this R2 value 
was low, the fit was rerun with randomized initial guess 
parameters. Through initial testing, it was clear that some 
surfaces (such as surfaces only assuming random monotonic 
increase in recruitment) required more control over the 
dependence of recruitment surface on PA and/or PW. Thus, 
four more parameters were introduced including a parameter 
on each of PA and PW to control the power to which each 
value was raised and a parameter on each of PA and PW to 
control a shift in the value of each variable. Figure 1 shows 
an example of a surface fitted using this method.  

D. EMG Recording 

An 8 contact FINE was used to validate the pulse space 
search method. Two FINEs were implanted bilaterally 
around the proximal femoral nerves of a volunteer with 
motor-complete spinal cord injury. The nerve cuff electrode 

 
Fig. 1. Example of Pulse Space Search Method and Resulting Surface 
Fit on Simulated EMG Recruitment Data. Blue dots show sampled 
points in the simulated EMG recruitment surface. Note that the pulse 
space search method sampled few points in the plateau of this surface. 
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was connected to a stimulator which could deliver a 
monopolar, charge-balanced, biphasic stimulus 
independently to each contact with a range of PA from 0.1 
mA to 5 mA and PW from 1 μs to 255 μs. Stimulus pulses 
were delivered 3 times at each (PA, PW) point. EMG signals 
from rectus femoris, vastus lateralis, vastus intermedius, 
vastus medialis, and sartorius were recorded with needle 
electrodes. The EMG signal was amplified and low pass 
filtered at 1,000 Hz and sampled at 2,500 Hz. The signal 
was then rectified and integrated from 3 ms to 40 ms, and 
this value was normalized by the maximum EMG recording 
for a given channel. The pulse space search method was 
utilized to determine which points in PA and PW to sample.  

Informed consent was acquired prior to all experimental 
procedures and all human testing protocols were approved 
by the Institutional Review Board of MetroHealth Medical 
Center, Cleveland, OH. 

E. Surface Fitting Validation 

75 EMG Recruitment surfaces were collected using the 
pulse space search method (5 muscles over 15 contacts). 
These surfaces were randomly divided into separate data 
sets so that one was used to fit surfaces to the recruitment 
data and the other set was used to verify the fit. As well, 
these 75 surfaces were placed into three groups based on the 
ratio of the normalized mean to the standard deviation of the 
signal at a given point (3 samples were taken at each point). 
This is noted here as low, medium, and high SNR groups 

Goodness of fit was determined using coefficient of 
determination (R2) of both datasets and also by examining 
what proportion of surfaces correctly predicted the PW at 
which EMG threshold (determined as 10% of maximal 
recruitment) was passed at PA of 0.8 mA and 1.4 mA. The 
PW threshold predictions were deemed correct if they fell 
within the range of PW that was found during implantation 
when binary search along PW at these amplitudes was 
carried out on the same muscle and contact.  

III. RESULTS 

A. Fitting Surfaces with Different Sampling Methods 

Figure 2 provides an overview of the data initially 
collected when sampling from and then fitting surfaces to 
simulated EMG data. Using the pulse space search method 
on 1 surface at a time achieves a high value of R2 with much 
fewer points than a search on 12 surfaces at a time. This is 
expected since there are fewer high-information areas in 
space to sample. However, this difference disappears 
quickly as number of surfaces increases such that searching 
12 surfaces at a time only requires a small increase in 
sample size compared to 6 surfaces at a time. Also of note is 
that a predefined grid method for choosing points is 
consistently less reliable at fitting a surface with a given 
number of samples. This is obvious when examining the 
worst fits from both methods: the 2.5th percentile using the 

grid method is generally quite low.  
Based on these simulated surfaces, using the pulse space 

search method, about 15 samples can fit a single Gompertz 
surface with 0.025 and 0.05 standard deviation noise. To 
classify the recruitment for 12 surfaces at once (stimulating 
12 muscles with one electrode), this search method needs 
about 45 samples. The grid method reaches a plateau at 
about the same number of samples as the search method on 
12 surfaces. However, the mean of the R2 value is about 
0.05 lower and the 2.5th percentile is up to 0.5 lower. The 
grid method also never reaches the same R2 values that the 
search method does, likely due to imprecision during surface 
fitting. It is also of note that this search and fit method is 
relatively robust to simulated noise (Figure 2 a and b). 

B. Efficient Nerve Stimulation Parameter Selection 

During implantation, the pulse space search method was 
able to characterize EMG recruitment surfaces well using an 
average of 58 sample points (a range of 29 to 103 over all 
contacts). This required approximately 1 minute of time to 
characterize each channel. As well, this could have been 
achieved with fewer points, since extra sampling was 
required for validation datasets. 

 
Fig. 2. Goodness of Fit of Simulated EMG Recruitment Surfaces Pulse 
Using Space Search and Grid-Based Method. Coefficient of 
determination (R2) mean (solid lines) and 2.5th and 97.5th percentiles 
(dashed lines) vs. sample number. Results are shown for noise added 
with a standard deviation of 2.5% of signal (a) and 5% of signal (b).

7240



  

C. Validation of Fitting Recruitment Surfaces 

To validate the previous results which used simulated 
recruitment surfaces, EMG data from the subject with 
bilateral proximal femoral nerve cuffs were fit and validated 
(Figure 3). The goodness of fit was dependent on the quality 
of the recorded EMG signal from the muscle being 
stimulated. For this reason, the 75 recruitment surfaces fit in 
this study were divided into three groups based on sum of 
the ratio of normalized mean to standard deviation at each 
point (SNR in Figure 3). While a relationship between R2 
and SNR is noted, differences are not significant. It is 
believed they would be with more subjects. 

The best R2 values are over 0.8 for the dataset being fit, 
and over 0.75 for the validation dataset. This does drop as 
SNR drops, especially in the validation set. This same trend 
is not noted when the fitted Gompertz surfaces are used to 
predict the PW at which threshold (10% of maximum) 
occurs. This is likely due to the Low SNR group of surfaces 
having high recruitment only at higher PA, PW values (thus 
the average mean over the sample collected is lower and so 
SNR is lower). This results in the PW range of thresholds 
being larger and thus easier to predict.  There may be 
difference between threshold prediction results at PA of 0.8 
mA and 1.4 mA but this is not significant in these results. 

IV.  DISCUSSION 

Based on the initial analysis of fitting simulated muscle 
recruitment surfaces, fitting a surface to adaptively-chosen 
(as in the pulse space search) points presents a promising 
method of characterizing muscle recruitment as it relates to 

changes in PA and PW. As well, the pulse space search 
method works quickly and provides samples to fit 
recruitment surfaces well. The sampling method is much 
more efficient at acquiring recruitment data than previous 
methods involving modulation of a single stimulation 
parameter at a time.  In the amount of time that previous 
methods characterized two to three curves along PW, this 
method characterizes a full surface over PA and PW. The 
method will be faster if validation datasets are not required. 
In the future, it may also be beneficial to examine possible 
benefits of weighting certain areas in the PA, PW space 
more highly than others. These areas would ideally be found 
by examining many recruitment surfaces and finding areas 
of significantly elevated or decreased information.  As well, 
future comparison to other sequential sampling methods, 
such as particle filters, could be fruitful. Surface fitting 
appears promising but could be improved. More time 
allowed for computation iterations can give better fitting 
results. Assuming that recruitment should monotonically 
increase over PW and PA, it may be possible to weight areas 
that are presumed to be known (such as high or low 
plateaus).  This may provide more reliable fitting in fewer 
iterations by ensuring the proper surface shape even if only a 
few points in the high or low plateaus are sampled.   

The analysis performed on EMG data provides strong 
evidence that recruitment surfaces can be well characterized 
using Gompertz surfaces. Muscles that are highly recruited 
by a given contact are fit very well. However, there remains 
concern with poorer fitting of less-strongly recruited 
muscles with lower SNRs. In the future, running similar 
surface fitting validation with results from a patient with a 
chronically-implanted nerve electrode (where thousands of 
data points could be obtained at one time) could be very 
useful to further confirm the validity of these methods.  
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Fig. 3. Evaluation of Gompertz Surfaces Fit to Experimental EMG 
Recruitment Data. EMG data were divided into equally sized groups of 
25 surfaces based on the ratio of the normalized mean to standard 
deviation of signal at a given point (low, medium, high SNR groups). 
Goodness of fit was evaluated by mean R2 value (a) of both the fit and 
validation data sets and proportion of predictions of threshold PW 
(10% of maximum) that fall within the binary searches (b) at different 
values of PA. Error bars represent standard error of the mean.
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