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Abstract— Computer-based training systems have been
widely studied in the field of human rehabilitation. In health
applications, Virtual Reality presents itself as an appropriate
tool to simulate training environments without exposing the
patients to risks. In particular, virtual prosthetic devices have
been used to reduce the great mental effort needed by patients
fitted with myoelectric prosthesis, during the training stage.
In this paper, the application of Virtual Reality in a hand
prosthesis training system is presented. To achieve this, the
possibility of exploring Neural Networks in a real-time classifi-
cation system is discussed. The classification technique used in
this work resulted in a 95% success rate when discriminating
4 different hand movements.

I. I NTRODUCTION

In the past few years, Medicine and other human health
related areas have benefited from the technological advances
presented by Virtual Reality (VR) [1]. Specially when ap-
plied toward human rehabilitation, VR provides immersion
that favors the patient’s cognitive and motor abilities training
[2].

The use of VR techniques by users fitted with myoelectric
prosthesis in the training stage presents itself as a comple-
mentary tool that favors users adaptation to the artificial
limbs [3]. Despite the high costs associated with these
devices, the users’ adaptation to the prosthesis can be seenas
a major problem, regarding the fact that many patients still
give up during the training process [3]. Besides making it
possible to evaluate different control systems performance,
the use of VR in the simulation of myoelectric prosthesis
eases the problem of users’ adaptation by providing the
patients with a visual feedback channel. Therefore, the use
of virtual prosthesis reduces significantly the patients’ mental
effort spent in the training stage [4].
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Myoelectric prosthesis control is based on the use of
electromyographic (EMG) signals collected from remnant
muscles [5]. An EMG signal consists in the electrical man-
ifestation of the neuromuscular activation associated with a
contracting muscle [6], [7]. This signal can be measured in
the skin surface (surface EMG or sEMG) or by implanting
sensors in the inner layers of the muscle. According to
the medical literature, different forearm muscles are related
to hand motion and EMG signals can be measured in
these muscles even after hand amputation [8]. By analyzing
and processing EMG signals, it is possible to classify and
associate different hand motions to the corresponding signals,
which consists in an important human-machine interface with
wide application such as prosthesis control, robotic hands
control and Force Display Devices (FDD) control in Virtual
Reality environments [9]. Many authors have investigated the
use of EMG signals in upper limb and prosthesis control:
Sebelius et al. [4] and Pons et al. [10] studied the problem
of real-time virtual hand prosthesis control, using different
classification strategies; Herle et al. [3], Nogueira [11] and
Soares et al. [5] addressed virtual arm prosthesis control,
using artificial neural networks, feature extraction and a fixed
signal windowing (200 ms) approach. Among the main chal-
lenges faced by these authors, one can highlight EMG signal
classification, pattern recognition, feature extraction,real-
time signal processing and realistic prosthesis simulation.

This work presents a VR training environment prototype
that enables virtual hand prosthesis simulation/control using
Artificial Neural Networks as the main element of the
classification technique. EMG signals are classified by the
network and a virtual prosthesis is controlled, performing4
hand movements: grasping, flexion, extension and forearm
pronation.

II. M ATERIALS AND METHODS

In this work, a learning vector quantization (LVQ) neural
network with 5 input units (Xi, i = 1 · · · 5) and a varied
number of output units (Yj , j = 20, 40, 60, 80) has been
used. Different numbers of output units were tested, obtain-
ing satisfactory results (average performance above 80%)
with 80 output units (20 units for each movement class)
when performing offline cross validation on training data. A
more detailed approach to performance calculation will be
presented in Section II-B. Figure 1 presents the architecture
of the network used in this work.
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Fig. 1. LVQ network architecture (N = 20, 40, 60, 80)

A. Feature extraction

EMG signals were collected from the flexor carpi radialis
muscle of 3 healthy subjects, using a single-channel bipo-
lar recording technique. Inter subject variability in EMG
generation was not an issue, since the network is trained
and tested separately for each subject. Due to the EMG
signal complexity, as proposed by Herle [3], it is necessary
to reduce the network’s input units number. In order to
achieve this, the solution adopted in this work was to extract
features from the EMG signal, mapping it to a smaller
dimension vector, called feature vector. Previous work such
as Englehart et al. [12] and Zecca et al. [13] suggests
different approaches to improve the network classification
performance by applying dimensional reduction to the input
vector.

First of all, a signal windowing was conducted, in order
to select only the signal intervals with relevant information.
Windowing intervals were determined using the Teager’s
energy operators (TEO). These operators are useful for
analyzing single component signals from the energy point-
of-view, and can be used to determine signal’s relevant
information intervals [14], [15]. Equation 1 presents the
Teager energy operator in the discrete domain, as defined
by Kaiser [14]. Different thresholds to detect relevant signal
intervals were tested. A threshold of1 · 106 resulted in
signal windows with great similarity with visually obtained
windows.

Ψ[x(n)] = x2
n − xn+1 · xn−1 (1)

wherex is the sample vector andn is the sequence index.
Signal windows were divided into 40 samples segments,

as suggested by Herle [3]. For each segment, the following
features were extracted: Mean Absolute Value - MAV, Mean
Absolute Value Slope - MAVS, Zero Crossing - ZC, Slope
Sign Changes - SSC and Waveform Length - WL [16].

MAV represents the mean absolute value of the analyzed
segment. Equation 2 is used to calculate this value [16].

x̄i =
1

S

S∑

m=1

|xm|, (2)

wherei is the segment number,S is the number of samples
per segment andxm is them-th sample in the segmenti.

Mean absolute value slope (MAVS) consists of the differ-
ence between two adjacent segments MAV, and is calculated
by the relation [16]:

∆x̄i = x̄i − x̄i−1, (3)

wherei andi−1 are two adjacent segments,i = 2...I andI
is the total number of segments for a given signal window.

Zero cross number (ZC) is a frequency measure that can
be obtained by counting the number of times a waveform
crosses the liney = 0. A threshold was included in order to
ignore noise-induced zero cross. As proposed by Herle et al.
[3], a thresholdǫ = 10−6 was used in this work. Zero cross
counter is incremented each time the conditions

{xm > 0 andxm+1 < 0} or

{xm < 0 andxm+1 > 0} and

|xm − xm+1| ≥ ǫ

(4)

are satisfied by two consecutive samplesxm andxm+1 [3].
Slope sign changes (SSC) provide another frequency con-

tent measurement. The same threshold of the ZC counter
was used in the SSC counter, that is incremented when the
condition 5 is satisfied for three consecutive samplesxm−1,
xm andxm+1 [3].

xm > xm−1 andxm > xm+1 or

xm < xm−1 andxm < xm+1 and

|xm − xm+1| ≥ ǫ or |xm − xm−1| ≥ ǫ

(5)

Waveform length (WL) is used to analyze waveform
complexity in each segment. This parameter consists in the
cumulative length of the waveform in the current segment.
Equation 6 provides, in a single parameter, a measurement
of the segment’s amplitude, frequency and duration [3], [16]:

l =

S∑

m=1

|∆xm|, (6)

with ∆xm = xm−xm−1, xm andxm−1 being two adjacent
samples.

B. Network training

After feature extraction, some experiments were conducted
in order to evaluate the influence of some configuration
parameters in network training. Analyzed parameters were:
number of output units, learning rate (α), tolerance andα
decay rate.

In these experiments, training patterns were presented to
the previously trained network. For each motion class, net-
work efficiency was calculated as the ratio between correct
classifications and total number of patterns [17]. Equation7
presents efficiency calculation.

E =
Ncorrect

Ntotal

(7)
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C. Classification technique

In order to improve the classification performance of
the network, a majority voting scheme based classification
technique was used. Input vectors are divided into 40 samples
segments, with no overlapping between segments. Each seg-
ment is then classified by the network. Finally, the network
classifies the input vector as belonging to the same class as
the majority of the classified segments. In case of a tie, the
input vector is marked as unclassified by the network. Figure
2 presents an example of this classification strategy.

Fig. 2. Signal segmentation and classification.

In Figure 2, the entire sample set is presented in (a),
whereas in (b), the signal is segmented and each of the
segments is classified by the network. Finally, in (c), since
the majority of the segments (3 of the 5 segments) were
classified as belonging to the class 1, signal is classified as
belonging to class 1 as well.

D. Training environment

In this work, a system prototype has been developed to
provide neural network configuration and test. The network
is then used to control a hand prosthesis, in a virtual
environment. This prototype is presented in Figure 3.

Fig. 3. Graphical user interface of proposed system.

The virtual arm used to represent the prosthesis in this
work was adapted from the original model, developed by Ka-

tor and Legaz [18]. After the original model’s segmentation,
considering this work’s requirements, a 22 bones armature
was adapted to the virtual model, in order to provide the
animation of the virtual hand. Considering the applicationof
the model in a hand prosthesis training system, 4 movements
(grasping, extension, flexion and pronation) were animated
[19].

Patient’s interaction with the virtual training environment
is done through the EMG signal’s classification interface.
Four hand movements are executed in the virtual envi-
ronment: hand extension, hand flexion, hand grasping and
forearm pronation.

E. System architecture

Figure 4 shows the system architecture, which is composed
by 3 main modules. In the data acquisition module, EMG
signal is collected by the electromyograph and stored in data
files. Then, in the processing module, feature extraction is
conducted and resulting feature vectors are stored. The neural
network provides signal classification from the stored feature
vectors. Finally, using the obtained classification, the virtual
prosthesis is animated.

Fig. 4. Prototype’s architecture.

In order to evaluate the prototype’s performance in real-
time applications, a real-time simulation module was de-
veloped. This module, presented in Figure 5, consists of a
client-server application. In the client side, stored datais read
from data files and sent by a stream socket to the server
in a fixed rate. After collecting data, the server proceeds
signal windowing, feature extraction and finally, segment
classification.

III. D ISCUSSION

The developed prototype presented good performance in
the classification of EMG signals. However, in this work,
real-time signal processing was investigated using only the
real-time simulation module. For real-time applications,the
resulting response delay due to the signal acquisition devices
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Fig. 5. Real-time simulation module architecture.

must be considered. In this experiment, this requirement did
not affect overall network performance, since the real-time
simulation data was read from stored data files.

Using the classification technique presented in Section
II-C, the network correctly classified up to 19 of the 20
analyzed patterns, using 80 output units. This success rate
corresponds to a 95% classification efficiency. Using 40
output units, a classification efficiency of around 80% (16
of the 20 patterns correctly classified) was obtained.

IV. CONCLUSION AND FUTURE WORK

This paper presented artificial neural networks that were
used to classify EMG signals, applied to hand prosthesis
simulation and control within a Virtual Reality environment.
The techniques used in signal’s features extraction and
classification enabled the network to achieve a 95% clas-
sification performance, which is similar to the classification
performance reported by Herle [3] in off-line arm prosthesis
control.

The proposed classification technique provided an increase
in the classification system’s efficiency (compared to the
single segment classification approach). The time delay ob-
served in real-time conducted tests (due to signal windowing
and feature extraction in real-time) was not critical, since it
corresponds to a slight increase in the overall response time.
An evaluation of this response time by myoelectric prosthesis
users consists in an interesting proposal for future works.

Virtual training environments used in myoelectric prosthe-
sis simulation and control have large application in health
areas, more specifically as assistive technologies in human
post-amputation rehabilitation. Furthermore, these environ-
ments constitute an auxiliary monitoring and evaluation tool
for potential users of this type of prosthesis. The possibility
of integrating the presented prototype with a database system,
in order to automatically generate training reports, is oneof
the main factors that suggests its applicability and use by
health professionals.

More future work suggestions are: 1) the evaluation of
other signal features’ impact in the classification stage;
2) extension of the current system to other EMG signals
(associated with other classes of movements); 3) statistical
evaluation of different neural networks’ performance in the
analyzed signals’ classification.
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