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Abstract— Computer-based training systems have been  Myoelectric prosthesis control is based on the use of
wide_ly s_tudied_in the fieIc_zI of human (ehabilitation. In health electromyographic (EMG) signals collected from remnant
applications, Virtual Reality presents itself as an appropriate muscles [5]. An EMG signal consists in the electrical man-

tool to simulate training environments without exposing the ifestati f th | tivati iatedh it
patients to risks. In particular, virtual prosthetic devices have Ifestation or the neuromuscuiar activation associated i

been used to reduce the great mental effort needed by patients contracting muscle [6], [7]. This signal can be measured in
fitted with myoelectric prosthesis, during the training stage. the skin surface (surface EMG or sEMG) or by implanting
In this paper, the application of Virtual Reality in a hand  sensors in the inner layers of the muscle. According to
prosthesis training system is presented. To achieve this, the e medical literature, different forearm muscles areteela

possibility of exploring Neural Networks in a real-time classifi- . . .
cation system is discussed. The classification technique used in 10 hand motion and EMG signals can be measured in

this work resulted in a 95% success rate when discriminating these muscles even after hand amputation [8]. By analyzing

4 different hand movements. and processing EMG signals, it is possible to classify and
associate different hand motions to the correspondinga€gn
[. INTRODUCTION which consists in an important human-machine interfach wit

In the past few years, Medicine and other human heaIlWide application such as prosthesis control, robotic hands

related areas have benefited from the technological adsran&pmlr,OI and. Force Display Devicesh(FDIrir)) cqntrol i_n Virtual
presented by Virtual Reality (VR) [1]. Specially when alo_Rea ity environments [9]. Many authors have investigaked t

plied toward human rehabilitation, VR provides immersio se of EMG signals in upper limb and prosthesis control:

I . - Sebelius et al. [4] and Pons et al. [10] studied the problem
that favors the patient’s cognitive and motor abilitiesrirg X ) . . .
2] P g of real-time virtual hand prosthesis control, using diietr

The use of VR techniques by users fitted with myoelectri lassification strategies; Herle .et al. [3], Noguelra_[lm]ja
oares et al. [5] addressed virtual arm prosthesis control,

rosthesis in the training stage presents itself as a cemple_. o . )
P g stage p P sing artificial neural networks, feature extraction ancedi

mentary tool that favors users adaptation to the artificiaf | windowind (200 h A h in chal
limbs [3]. Despite the high costs associated with thesggnal win owing ( ms) approach. Among the main chal-

devices, the users’ adaptation to the prosthesis can beaseeﬁenge.s'. faged by these authors_,_one can highlight EMG signal
a major problem, regarding the fact that many patients Stiﬁla33|f!cat|on, pattern recognition, feature e_xtra.ctloeal_-
give up during the training process [3]. Besides making jme signal processing and realistic prosthesis simuiatio
possible to evaluate different control systems perforreanc  1hiS Work presents a VR fraining environment prototype
the use of VR in the simulation of myoelectric prosthesidhat enables virtual hand prosthesis simulation/contsaigs
eases the problem of users’ adaptation by providing th@tificial Neural Networks as the main element of the
patients with a visual feedback channel. Therefore, the u§tassification technique. EMG signals are classified by the
of virtual prosthesis reduces significantly the patientshtal network and a virtual prosthesis is controlled, performing
effort spent in the training stage [4]. hand movements: grasping, flexion, extension and forearm
pronation.
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w —= @ wherei is the segment numbes§, is the number of samples
per segment and,,, is the m-th sample in the segmeit
/ Mean absolute value slope (MAVS) consists of the differ-
@ ence between two adjacent segments MAV, and is calculated
\ ¢ by the relation [16]:

[ ] Y
[ ] v [ ]
. y ATy = Z; — Ti—1, 3)
/ ° wherei andi — 1 are two adjacent segmenis= 2...7 and
is the total number of segments for a given signal window.
\ Zero cross number (ZC) is a frequency measure that can
W, @ be obtained by counting the number of times a waveform
crosses the ling = 0. A threshold was included in order to

ignore noise-induced zero cross. As proposed by Herle et al.
[3], a thresholde = 10~% was used in this work. Zero cross
counter is incremented each time the conditions

Fig. 1. LVQ network architecture (N = 20, 40, 60, 80)

A. Feature extraction

EMG signals were collected from the flexor carpi radialis {zm >0andz,4+1 <0} or
muscle of 3 healthy subjects, using a single-channel bipo- {zm < 0 andz,,+1 > 0} and (4)
lar recording technique. Inter subject variability in EMG |Zm — Tms1| > €

generation was not an issue, since the network is trained

and tested separately for each subject. Due to the EMEE Isatisfi_ed b);]two consecutive S.me% ﬁndfx”” 1 13]
signal complexity, as proposed by Herle [3], it is necessar Slope sign changes (SSC) provide another frequency con-
to reduce the network’s input units number. In order t ent measurement. The same threshold of the ZC counter

achieve this, the solution adopted in this work was to extrad/aS used in the SSC counter, that is incremented when the
features from the EMG signal, mapping it to a smaIIeFond't'on 5 is satisfied for three consecutive sampigs 1,

dimension vector, called feature vector. Previous workhsuc’™ and @1 [3]-
as Englehart et al. [12] and Zecca et al. [13] suggests

different approaches to improve the network classification T > Tp—1 ANA Ty > Typyq OF
performance by applying dimensional reduction to the input Tm < Tm—1 @Ndx,, < T;yme1 and (5)
vector.

. i X . . Ty — T 1| > €eor |z, —Tm_1]| = €
First of all, a signal windowing was conducted, in order [om = 1] _ [@m = Zm1]
to select only the signal intervals with relevant inforroati ~ Yaveform length (WL) is used to analyze waveform

Windowing intervals were determined using the Teager§CMPplexity in each segment. This parameter consists in the
energy operators (TEO). These operators are useful fgpmul_anve Iengt'h of t_he queform in the current segment.
analyzing single component signals from the energy poinduation 6 provides, in a single parameter, a measurement
of-view, and can be used to determine signal's releva/f the segment's amplitude, frequency and duration [3]]:[16
information intervals [14], [15]. Equation 1 presents the g

Teager energy operator in the discrete domain, as defined [ = Z | Az, (6)

by Kaiser [14]. Different thresholds to detect relevannsig
intervals were tested. A threshold af- 10° resulted in
signal windows with great similarity with visually obtaithe
windows.

m=1
with Az, = 2, — xm_1, T, andx,,_1 being two adjacent
samples.

B. Network training

Ulz(n)] =22 — Tpi1 - Ty (1) After feature extraction, some experiments were conducted
in order to evaluate the influence of some configuration
garameters in network training. Analyzed parameters were:

. Number of nits, learning r. leran n
as suggested by Herle [3]. For each segment, the followin umber of output units, learning rate)( tolerance and

features were extracted: Mean Absolute Value - MAV, Mear(1§Je cay rate. . L
In these experiments, training patterns were presented to

Absolute Value Slope - MAVS, Zero Crossing - ZC, SIOpethe previously trained network. For each motion class, net-

Sign Changes - SSC and Waveform Length - WL [16]. Iy .
work efficiency was calculated as the ratio between correct
MAV represents the mean absolute value of the analyze e
. . : Classifications and total number of patterns [17]. Equafion
segment. Equation 2 is used to calculate this value [16].

presents efficiency calculation.

wherez is the sample vector and is the sequence index.
Signal windows were divided into 40 samples segment

S
— 1 Ncorrect
T = G mls 2 =
Ti= 3 mZ:jl || (2) B= (7)
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C. Classification technique tor and Legaz [18]. After the original model’'s segmentation
In order to improve the classification performance ofonsidering this work's requirements, a 22 bones armature
the network, a majority voting scheme based classificatiof@S adapted to the virtual model, in order to provide the
technique was used. Input vectors are divided into 40 sampl@nimation of the virtual hand. Considering the applicatin
segments, with no overlapping between segments. Each sé@e model in a hand prosthesis training system, 4 movements
ment is then classified by the network. Finally, the networkdrasping, extension, flexion and pronation) were animated
classifies the input vector as belonging to the same class 38
the majority of the classified segments. In case of a tie, the Patient’s interaction with the virtual training environnte
input vector is marked as unclassified by the network. Figud§ done through the EMG signal's classification interface.

2 presents an example of this classification strategy. Four hand movements are executed in the virtual envi-
ronment; hand extension, hand flexion, hand grasping and

forearm pronation.

E. System architecture

Figure 4 shows the system architecture, which is composed
by 3 main modules. In the data acquisition module, EMG
signal is collected by the electromyograph and stored ia dat
(a) Original signal files. Then, in the processing module, feature extraction is
conducted and resulting feature vectors are stored. Thaheu
network provides signal classification from the storeduesat
vectors. Finally, using the obtained classification, théuil
prosthesis is animated.

|
C1 c2 ciL | c c2 Acquisiton
System
(b) Segmented signal _a_nd i_ndividual segment (EMG)
classification
Data
c1:3 B/ Class =C1 Acquisition
e
—€2:2x
(c) Analysis and final classification
Fig. 2. Signal segmentation and classification. ANN BE Feature
. . - . Classification e Vactors Extraction
In Figure 2, the entire sample set is presented in (a),
whereas in (b), the signal is segmented and each of the Processing
segments is classified by the network. Finally, in (c), since
the majority of the segments (3 of the 5 segments) were
. i . A .. Virtual Environment
classified as belonging to the class 1, signal is classified as
belonging to class 1 as well. *
D. Training environment —
Animation
In this work, a system prototype has been developed to
provide neural network configuration and test. The network Fig. 4. Prototype’s architecture.
:asnvtirr]s::ml:j\?dTL?s C?gg}?' ae irs]anr(cjesggc::jh?rfllszi lIJnreaS virtal 1, order to evaluate the prototype’s performance in real-
’ P yp P 9 ' time applications, a real-time simulation module was de-

veloped. This module, presented in Figure 5, consists of a
client-server application. In the client side, stored dat@ad
from data files and sent by a stream socket to the server
in a fixed rate. After collecting data, the server proceeds
signal windowing, feature extraction and finally, segment
classification.

I11. DI1SCUSSION
The developed prototype presented good performance in
the classification of EMG signals. However, in this work,
real-time signal processing was investigated using ondy th
The virtual arm used to represent the prosthesis in thigal-time simulation module. For real-time applicatiotis
work was adapted from the original model, developed by Kaesulting response delay due to the signal acquisitioncesvi
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Fig. 3. Graphical user interface of proposed system.
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Fig. 5. Real-time simulation module architecture.
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(1]
(2]

(3]

must be considered. In this experiment, this requirement di
not affect overall network performance, since the reaktim [4]

simulation data was read from stored data files.

Using the classification technique presented in Sections)
II-C, the network correctly classified up to 19 of the 20
analyzed patterns, using 80 output units. This success rate
corresponds to a 95% classification efficiency. Using 4Qs]
output units, a classification efficiency of around 80% (16

of the 20 patterns correctly classified) was obtained.

IV. CONCLUSION AND FUTURE WORK

(7]

This paper presented artificial neural networks that were
used to classify EMG signals, applied to hand prosthesi$]

simulation and control within a Virtual Reality environnien

The techniques used in signal's features extraction and
classification enabled the network to achieve a 95% clasf€l

sification performance, which is similar to the classifioati

performance reported by Herle [3] in off-line arm prostiesi|1

control.

The proposed classification technique provided an increase
in the classification system’s efficiency (compared to thgi)
single segment classification approach). The time delay ob-
served in real-time conducted tests (due to signal windgwirhz]

and feature extraction in real-time) was not critical, siriic

corresponds to a slight increase in the overall response tim

An evaluation of this response time by myoelectric prosi!ehes[13
users consists in an interesting proposal for future works.
Virtual training environments used in myoelectric prosthe

sis simulation and control have large application in healtH*
areas, more specifically as assistive technologies in human

post-amputation rehabilitation. Furthermore, these renvi

ments constitute an auxiliary monitoring and evaluatian to

for potential users of this type of prosthesis. The posggibil

[15]

of integrating the presented prototype with a databaseisyst [16]

in order to automatically generate training reports, is ohe

the main factors that suggests its applicability and use ky7]

health professionals.

More future work suggestions are: 1) the evaluation of
other signal features’ impact in the classification stageis]
2) extension of the current system to other EMG signals

(associated with other classes of movements); 3) statistid
evaluation of different neural networks’ performance ie th

analyzed signals’ classification.
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