
  

 

Abstract—Virtual reality (VR) applications are rapidly 

permeating fields such as medicine, rehabilitation, research, 

and military training. However, VR-induced effects on human 

performance remain poorly understood, particularly in relation 

to fine-grained motor control of the hand and fingers. We 

designed a novel virtual reality environment suitable for hand-

finger interactions and examined the ability to use visual 

feedback manipulations in VR to affect online motor 

performance. Ten healthy subjects performed a simple finger 

flexion movement toward a kinesthetically-defined 45° target 

angle while receiving one of three types of VR-based visual 

feedback in real-time: veridical (in which the virtual hand 

motion corresponded to subjects’ actual motion), or scaled-

down / scaled-up feedback (in which virtual finger motion was 

scaled by 25% / 175% relative to actual motion). Scaled down- 

and scaled-up feedback led to significant online modifications 

(increases and decreases, respectively) in angular excursion, 

despite explicit instructions for subjects to maintain constant 

movements across conditions. The latency of these 

modifications was similar across conditions. These findings 

demonstrate that a VR-based platform may be a robust 

medium for presenting visuomotor discordances to engender a 

sense of ownership and drive sensorimotor adaptation for 

(re)training motor skills. This may prove to be particularly 

important for retraining motor skills in patients with 

neurologically-based movement disorders. 

I. INTRODUCTION 

HE effects of visual feedback on the human motor 

system can be profound. Indeed, the simple act of action 

observation has been shown to significantly boost the motor 

system [1-11], facilitating training and encoding motor 

memories in both healthy subjects and patients with 

neurological diseases. Results of these studies also suggest 

that action observation of one‟s own movement during 

training is required to appropriately augment behavior and 

expedite learning [7]. Even more interesting are studies that 

demonstrate subjects‟ tendency to dynamically tune 

behavior, in real-time, to movements performed by 

anthropomorphically-shaped objects that not only appear 
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“lifelike” but also move in a manner that resembles normal 

human motion [12, 13]. This work has served as a driving 

force for development of technologies that allow researchers 

and clinicians to utilize different forms of visual feedback, 

time-locked to subjects‟ own movements, as a means of 

investigating the effects of feedback on the motor system, as 

well as a means of delivering therapy to patients. 

It has been suggested that VR environments will become 

mainstay in neurorehabilitation. VR gives subjects a sense of 

realness that can approximate real-world settings, while 

allowing the experimenter to modify visual parameters. The 

experimenter has full control over the size, shape, color, 

displacement, and velocity of objects in the virtual 

environment, which allows for controlled alteration of visual 

feedback during a motor task. Importantly, VR allows for an 

enjoyable, interactive setting that is conducive for training. 

For example, numerous prior studies demonstrate the 

efficacy of VR therapy in stroke rehabilitation [14-18], and 

VR behavioral effects have been shown not only to outlast 

training, but also to generalize across similar, though 

unpracticed, motor tasks [19]. VR therefore is an ideal 

instrument for providing augmented visual feedback.  

The scope of this study was twofold. First, we present the 

design of a novel virtual reality (VR) environment 

developed by our team, that integrates lifelike VR hands 

with real-time acquisition of hand kinematics. Second, we 

present experimental data that demonstrate how altering 

visual motion of the VR hand models, thus inducing a 

visuomotor discordance time-locked to the subjects‟ own 

motor commands, can alter online motor performance. 

Finally, we discuss these findings in the context of how this 

approach may be useful in the basic and clinical sciences to 

study and rehabilitate the motor system.  

Augmenting visual feedback during movement can be 

used to induce a visuomotor discordance such that the visual 

perception of one‟s movement does not coincide with the 

intended action and proprioceptive feedback. Often, 

visuomotor discordance is studied by rotating the motion of 

a cursor in a two dimensional plane that is often orthogonal 

to the actual movement. Furthermore, these experiments 

generally focus on gross upper limb movements, rather than 

dexterous hand and finger motion (grasping, pinching, 

pointing, individuation and sequencing). For these reasons, 

we focus on studying feedback effects on online hand 

coordination.  

We chose to study visuomotor discordance by imposing a 

gain perturbation to the VR hand model. Visuomotor gain 
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(as opposed to rotation perturbations) is generally more apt 

to learning, and is more amenable to generalization [20-23]. 

For these reasons, it offers an ideal starting point for a 

systematic investigation of the effects of visual feedback on 

motor performance. We hypothesized that applying a down-

scaled gain would lead subjects to over-compensate by 

increasing their movement vigor, while applying an up-

scaled gain would lead subjects to reducing their movement 

vigor. Our long-term goal is to use this knowledge to 

develop a versatile VR platform that will serve as a tool for 

neurorehabilitation.  

II. METHODS 

A. Subjects 

Ten healthy right-handed [24], subjects (7 male, mean ±1 

standard deviation [SD]: 27.5+/-6.7 years old) without 

history of neurological disease or orthopedic hand 

impairment participated in the study after signing 

institutionally informed consent.  

B. Virtual Reality (VR) Environment 

Subjects donned kinematic datagloves (5DT Data Gloves, 

Fifth Dimension Technologies), which were calibrated for 

each subject. Subjects were seated with hands and wrists 

comfortably supported in a semi-pronated position and 

hidden from direct line-of-sight underneath a flat screen 

monitor. A VR interface was constructed using Virtools 

Software (Dassault Systems), which permitted real-time 

streaming of kinematic data from the gloves. To maximize 

the perception of realness, the display was positioned 

horizontally above the hands and angled so that the vantage 

point of the virtual hands, whose movement was driven by 

glove data, corresponded to that of the subjects‟ actual hands 

just beneath the monitor (Fig. 1). Our published and 

preliminary data suggest that our VR environments engender 

a sense of realness to the subjects, provide valid and reliable 

measurement of kinematics, and hold promise as a 

rehabilitation tool in clinical populations [25-30]. 

C. Movement Task 

When the cue-word „Move‟ appeared on the monitor, 

subjects were instructed to flex the metacarpophalangeal 

(MCP) joint of their right index finger to a physical angle of 

45°, then return to an initial fully-extended position. 

Subjects were instructed to move at a comfortable speed. On 

all trials, a visual cue (the virtual finger would turn red) was 

provided when subjects reached the 45° physical target 

angle, irrespective of visual feedback (see next section). 

Because the visual cue did not appear until the end of the 

trial, it was expected that subjects would overshoot the 45° 

target angle.  

D. Visual Feedback Conditions 

Visual discordance was provided by applying either a 25% 

(22 trials) or 175% (22 trials) scaling factor to the real-time 

kinematic data streaming from the dataglove, and then 

applying the scaled data to actuate the virtual hand. Thus, 

each virtual joint moved 0.25 or 1.75 degrees, respectively, 

for every degree of actual joint motion. Veridical visual 

feedback (22 trials, control condition) was also provided by 

applying a 100% scaling factor to the VR hands. All 66 trials 

were pseudo-randomly interleaved in one 6.6 minute block. 

E. Analysis 

Joint angle data was acquired (rate, 50Hz) and analyzed 

offline. Data was filtered (10 Hz low-pass 2nd order 

Butterworth) using custom MATLAB software (The 

Mathworks, Inc.). Movement onset and offset were defined 

as the time when angular velocity exceeded and fell below, 

respectively, 5% of peak angular velocity. Peak joint angle 

(degrees) between movement onset and offset was the 

dependent kinematic variable. Means were calculated for 

each subject and each condition and submitted to a one-way 

repeated measures analysis of variance (rmANOVA) with 

factor “Condition” and levels “25% Gain”, “175% Gain”, 

and “100% Veridical”. We also analyzed a measure of 

latency, defined as the time after movement onset when 

kinematic traces in the 25% and 175% conditions deviated 

from the mean ±1 SD of the veridical (100%) trace. This 

measure indicated the time at which the compensatory 

response to the visuomotor gain perturbation was evident at 

the kinematic level. Statistical significance was set at 0.05. 

 

 
Fig. 1. Experimental setup from top and side views. 
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III. RESULTS 

For each subject, joint angle traces were aligned according 

to movement onset, averaged across the 22 trials of each 

condition, and plotted. Fig. 2 demonstrates that, for most 

subjects, the mean traces in the 25% (red) and 175% (green) 

scaling conditions exceeded and fell below, respectively, the 

mean veridical trace (blue). Each subject‟s mean traces were 

averaged and plotted as a global joint angle trace, at the 

group level (Fig. 2, bottom). The group-level joint angle 

trajectories revealed a pattern consistent with those evident 

at the individual subject level. Group mean joint excursion 

in the 25%, 100%, and 175% scaling conditions were 63.8°, 

58.1°, and 53.6°, respectively (Fig. 3, left). Repeated 

measures ANOVA revealed a significant (F2,29= 24.268, 

p<0.001) effect of visual feedback on peak angle, and post-

hoc pairwise comparisons showed that peak amplitude was 

significantly different between the 25% and 100% scaling 

conditions (t9=3.654, p=0.005) and between the 175% and 

100% scaling conditions (t9=5.490, p<0.001).  

 

 
 

Fig. 2. Top: Average kinematic traces across 22 trials, for each condition 

and subject (S1-S10). The 25%, 100%, and 175% scaling conditions are 

shown in red, blue, and green, respectively. Bottom: Group mean traces for 

each condition, averaged across all subjects. Dashed blue line represents 

veridical mean ± 1SEM. 

 As an additional post-hoc sub-analysis, we explored 

latency of deviation among the joint angle trajectories. This 

measure characterized the time at which the compensatory 

response to the visuomotor gain perturbation was evident at 

the kinematic level. Latency was defined as the time after 

movement onset when kinematic traces in the 25% and 

175% conditions deviated from the mean ±1 SD veridical 

(100%) trace. Latency for the 25% scaling condition was 

calculated as the time when the trace exceeded one standard 

deviation above the mean veridical trace. Latency for the 

175% scaling condition was calculated as the time when the 

trace fell below one standard deviation of the mean veridical 

trace. Mean latencies for each subject and each condition 

were recorded, and a group average was calculated for both 

the 25% scaling condition (group mean ±1SEM: 0.41 ± 

0.038 seconds) and the 175% scaling condition (0.38 ±0.031 

seconds) (Fig. 3, right). A paired t-test revealed no 

significant differences in compensatory latency between the 

25% and 175% scaling groups (t9=0.739, p=0.478).  

 

 
 

Fig. 3. Group mean (±1SEM) peak angle (left) and latency (right). The three 

scaling conditions – 25%, 100% (control), and 175% – are shown in red, 

blue, and green, respectively. Asterisk denotes statistical significance.  

IV. DISCUSSION 

The results of this experiment demonstrate the efficacy of 

our VR environment as a tool for altering online motor 

performance. While performing movements under visual 

gain perturbations, subjects adjusted their kinematics in a 

predicable manner (specific to each type of perturbation) as 

a means of compensating for the visuomotor discordance. 

We interpret these data in the following way. During down-

scaled (25% gain) trials, visual feedback provided the false 

illusion that motor output was inappropriately low. 

Consequently, the motor system compensated by increasing 

output drive to the muscles, leading to greater movement 

(angular excursion) in an attempt to match the virtual angle 

to the preplanned angle. Conversely, in the up-scaled (175% 

gain) trials, the exact opposite occurred – the illusion that the 

original motor plan was overly robust led subjects to 

decrease motor drive, resulting in reduced angular excursion.  

 Recent evidence suggests that visuomotor gain, relative to 

visuomotor rotation, exhibits broader generalization to 

untrained movement trajectories [22]. Prior studies have also 

shown that motor learning following online (real-time) 

visuomotor rotation exhibits broader generalization, relative 

to performance changes following offline error feedback 

[31, 32]. However, these studies implement visuomotor 

perturbations via virtual cursors, rather than lifelike hand 

models. Here, we have integrated these modalities, 
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demonstrating that scaled visual feedback of human finger 

movement, displayed in a VR environment, alters motor 

performance in a predictable manner.  

The ability to shape online movement kinematics is a 

valuable tool in neurorehabilitation. For example, stroke 

patients often have impaired proprioception and may tend to 

undershoot targets during particular training paradigms. By 

applying a down-scaled visual gain to their environment, the 

results of the current experiment suggest that subjects might 

increase excursion to the target goal. In other words, the 

illusion of excessive underperformance may boost the motor 

system, resulting in more vigorous performance. It would be 

interesting to determine whether, over many trials, the 

subject maintains accuracy even if visual gain is gradually 

increased towards veridical (i.e. increasing the gain from 

25% to 100%). If true, the long-term goal would be to 

establish individualized rehabilitation training protocols for 

patients, protocols that are tailored to patients‟ range of 

motion and degree of impairment. 

Finally, another interesting finding in this experiment was 

that latencies in the scaled-down and scaled-up visual 

feedback conditions were similar. This suggests that latency 

may be dependent not on the direction of gain (i.e. scaled-

down versus scaled-up) but rather on the magnitude of 

visuomotor discordance, relative to veridical feedback. Even 

more interesting is whether the relationship between altered 

motor performance and visuomotor discordance is linear (i.e. 

whether motor command increases proportionately as visual 

gain is brought from 100% to 25%). Furthermore, if 

performance is related to the degree of discordance, then one 

would also hypothesize that a threshold gain level may exist. 

In future experiments, we hope to determine the visual gain 

tuning function that characterizes the threshold for 

perceiving visuomotor discordance.  
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