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Abstract— It was previously shown that beta oscillations of
local field potentials in the arm area of the primary motor
cortex (MI) of nonhuman primates propagate as travelling
waves across MI of monkeys during movement preparation
and execution and are believed to subserve cortical information
transfer. To investigate the information transfer and its change
over time at the single-cell level, we analyzed simultaneously
recorded multiple MI neural spike trains of a monkey using a
Granger causality measure for point process models before and
after visual cues instructing the onset of reaching movements.
In this analysis, we found that more pairs of neurons showed
information transfer between them after appearances of up-
coming movement targets than before, and the directions of the
information transfer across neurons in MI were coincident with
the directions of the propagating waves. These results suggest
that the neuron pairs identified in the current study are the
candidates of neurons that travel with spatiotemporal dynamics
of beta oscillations in the MI.

I. INTRODUCTION

BETA oscillations in local field potential (LFP) observed

across the arm area of the primary motor cortex (MI)

of nonhuman primates propagate as plane waves along

the rostrocaudal axis of the motor cortex during motor

preparation and execution, and are believed to subserve

cortical information transfer [1]. They represent the summed

activity of multiple postsynaptic potentials near the recording

electrode site; however, little is known about the relationship

between the wave propagation of cortical oscillations and

the information flow among individual neurons across the

motor cortex. Recently, directed information between pairs

of neurons was studied using multiple spike trains in the MI

of a monkey [2], but they considered only pairwise directed

information and did not analyze how the network might

change in relationship to the stimulus.

In this paper, by simultaneously recording the ensemble

neural spiking activity across the arm area of the MI cortex,

we investigate information transfer between neurons and

the network change before and after visual cues instructing

the reaching movement. Recently methods that attempt to

identify associations between neurons were developed [3],

[4], but they provided little insight into the directional
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information transfer between them. The statistical measure of

causality that has primarily been used to assess information

transfer in the neuroscience community [5], [6] comes from

Granger’s notion of causality in the economics literature [7]:

if past values of y contain information that helps predict x

above and beyond the information contained in past values

of x alone, then y is said to Granger-cause x. Its mathemat-

ical formulation is based on the multivariate autoregressive

(MVAR) modeling of processes.

However, it is difficult to apply this method directly to

spike train data due to its binary nature. To address this issue,

in the current study we used a point process framework for

assessing directional interactions between neurons in [8] to

test how a network of neurons exhibiting causal interactions

changes around the onset times of visual stimuli instructing

the upcoming reaching movement. Previous studies [1], [9]

have shown that, regardless of slight changes in behavioral

tasks, beta oscillation waves often emerge after presentation

of visual cues. Thus by looking at state changes of neurons

around the time of the visual stimuli we could get more

insight as to what class of neurons were participating in beta

oscillation wave propagation and how those neurons were

connected.

The rest of this paper is organized as follows. Section II

describes behavioral tasks and data collection and explains a

point process framework for assessing the causal interactions

between multiple neurons. Section III describes the analysis

of neural data recorded in the motor cortex of a monkey, and

Section IV discusses the analysis results.

II. METHOD

A. Behavior task and data collection

All of the surgical and behavioral procedures were ap-

proved by the University of Chicago IACUC and conform

to the principles outlines in the Guide for the Care and Use of

Laboratory Animals. One monkey was trained to perform a

visuomotor task using a two-link exoskeleton manipulandum

[10]. The monkey was required to move a cursor on a

horizontal screen that was aligned to the monkey’s hand

to the position of a target. When the monkey successfully

reached the current target, a new target was displayed at

a random location within a workspace while the current

target disappeared. The monkey received a juice reward after

successfully acquiring five or seven consecutive targets.

We recorded multiple single unit spiking activities from

MI in a monkey using an Utah microelectrode array (Black-

rock Microsystems; 1 mm in length and 400µm inter-

electrode spacing) implanted contralateral to the moving
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arm. Neural spikes from up to 96 channels were recorded

at 30 kHz. Spike waveforms were sorted offline using a

semiautomated method incorporating a previously published

algorithm [11]. Signal to noise ratio (SNR) for each unit

were defined as the difference in mean peak to trough voltage

divided by twice the mean standard deviation computed from

all the spikes at each sample points. All the units with

SNR< 3 were discarded for the current study. The data for

each neuron was converted to a binary time series with 1 ms

time resolution. Among 115 neurons available for analysis,

we used only 25 neurons that were recorded from electrodes

located on even numbered rows and columns on 10 x 10 grid

on the multielectrode array due to the computational load.

Three data sets, each with 1,000 consecutive successful trials,

were constructed. Each data set consisted of three sub data

sets collected from the following time windows in relation

to visual cue onset, [−100, 50], [50, 200], and [200, 350] ms.

B. Analysis

The discrete, all-or-nothing nature of a sequence of neural

spike train together with their stochastic structure suggests

that neural spike trains may be regarded as point processes

[12], [13]. A neural point process model is completely

characterized by its conditional intensity function (CIF),

λ(t|H(t)), where H(t) denotes the spiking history of all

neurons in the ensemble up to time t. In this work, H(t)
is defined in the interval [t−MW, t), which is divided into

M non-overlapping rectangular windows of duration W ; We

denote the spike count of neuron n in a time window of

length W covering the time interval [t−mW, t−(m−1)W )
as Rn,m(t) for n = 1, ..., N and m = 1, ...,M . In this

analysis we intuitively set M to 5 and W to 3 ms to obtain a

relatively small number of parameters while maintaining the

temporal resolution. The CIF, λ(t|H(t)), represents the firing

rate of a neuron at time t, thus the probability that a neuron

will fire a single spike in a small interval [t, t + ∆) can

be approximated as λ(t|H(t))∆. In the generalized linear

model (GLM) framework, we modeled the log CIF as a

linear combination of the covariates, H(t), which describe

the neural activity dependencies [14]. Thus the logarithm of

the CIF for neuron i is expressed by

log λi(t|θi,Hi(t)) = θi,0 +

N∑

n=1

M∑

m=1

θi,n,mRn,m(t) (1)

where θi,0 relates to a background level of activity, and θi,n,m

represents the effect of ensemble spiking history Rn,m(t) of

neuron n on the firing probability of neuron i at time t for

n = 1, ..., N neurons.

Recently a point process framework for assessing causal

relationship between neurons was proposed in [8]. Based on

Granger’s definition on the causality [7], a potential causal

relationship from neuron j to i can be assessed based on the

log-likelihood ratio given by

log
Pr(future of i|past of i, past of j)

Pr(future of i|past of i)
. (2)

If past values of neuron j contain information that

helps predict future value of neuron i beyond the

information contained in past values of neuron i

alone, Pr(future of i|past of i, past of j) is greater than

Pr(future of i|past of i), thus the log likelihood ratio of (3)

is always greater than or equal to zero. The equality holds

when neuron j has no causal influence on i. This statistical

framework for assessing Gragner causality can be applied

to any modality as well as binary neural spike train data

[15]. However, the pairwise causality measures based on

(3) may give us a misleading picture of the relationships

between neurons if the detected associations are caused by

common inputs or mediated by other neurons [16]. This

pairwise Granger causality concept can be extended to a

general framework for identifying the causal relationships

between multiple neurons [8], [17] based on

log
Pr(future of i|past of everyone)

Pr(future of i|past of everyone except j)
. (3)

Thus, the Granger causality from neuron j to i is identified in

the following. First, the point process likelihood function of

neuron i, denoted by Li(θi|H(t)), is calculated using the

parametric CIF of (1); It relates the ith neuron’s spiking

probability to possible covariates such as its own spiking

history as well as the concurrent activity of other simulta-

neously recorded neurons [14]. Next, we assess the causal

relationship from neuron j to i by calculating the relative

reduction in the likelihood of neuron i obtained by excluding

the covariates effect of neuron j (spiking history of neuron j)

compared to the likelihood obtained using all the covariates

(spiking history of all neurons). The log-likelihood ratio, Γij ,

is given by

Γij = log
Li(θi)

Li(θ
j
i )

(4)

where the parameter vector θ
j
i is obtained by re-optimizing

the parametric likelihood model after excluding the effect

of neuron j. Since the likelihood Li(θi) is always greater

than or equal to the likelihood Li(θ
j
i ), the log-likelihood

ratio Γij is always greater than or equal to 0. If the spiking

activity of neuron j has a causal influence on that of neuron

i in the Granger sense, the likelihood Li(θi) is greater than

Li(θ
j
i ). The equality holds when neuron j has no influence

on i. The Granger causality measure given by (4) provides

an indication of the extent to which the spiking history of

neuron j affects the spike train data of neuron i. Thus we

can construct an N × N Granger causality matrix, whose

(i, j)th element represents the extent to which neuron j has

a causal influence on neuron i for i, j = 1, ..., N neurons.

This N × N matrix enables us to draw the causality neural

network graph with N nodes (neurons) connected by directed

edges representing the relative strength of causal effects.

This causality network represented the relative strength of

estimated causal interactions between neurons; however, it

provided little insight into which of these interactions are
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statistically significant. To address this issue, a multiple

hypothesis testing was performed based on the likelihood

ratio test statistic since we can show that 2 times log-

likelihood ratio given by (4) asymptotically follows χ2

M

where M is equal to the difference in dimensionality of

the two models [18], [19]. Thus, another N × N causal

connectivity matrix was constructed, whose (i, j)th element

corresponds to either statistically significant or insignificant

interaction.

Once the causality matrix was obtained for each sub data

set, degrees for each neuron that showed any statistically

significant interactions were computed across all three sub

data sets for all three data sets. The degree for neuron i is

defined as the number of neurons that are coupled to i by

at least one interaction [20]. Then degrees of all neurons

per sub data set was obtained for all nine sub data sets

to show consistency of causality networks across three data

sets at same time windows. Another measure of network

consistency across data sets was obtained simply by counting

the number of pairs exhibiting causal interactions.

III. RESULTS

The causality networks between the recorded neural spike

trains were identified using the method in [8], and the results

were illustrated in Fig. 1. Fig. 1 (a), (b), and (c) show

the statistically significant causal interactions at different

timings in relation to the visual cue onset: Time Window

1 for [−100, 50] ms, 2 for [50, 200] ms, and 3 for [200, 350]
ms, respectively. The relative positions of neurons in the

diagrams correspond to the relative positions of the electrode

on the array where the neurons were detected. Adjacent

neurons (nodes) were recorded from a same electrode. The

location of the array is such that the lower right corner is

oriented caudal and the upper left rostral.

(a)                               (b)                                (c)

Fig. 1. A diagram of causality networks estimated at different timings in
relation to the visual cue onset: Time Window 1 for [−100, 50] ms, 2 for
[50, 200] ms, and 3 for [200, 350] ms, respectively. (a) Causality network
estimated for Time Window 1 is illustrated. (b) Causality network estimated
for Time Window 2 is illustrated. More neurons were causally influencing
each other. (c) Causality network estimated for Time Window 3 is illustrated.
Less significant causal interactions were detected than Time Window 2.

As shown in Fig. 1, most causal interactions were detected

for Time Window 2 than other two intervals. These causality

networks were obtained from the data set1, and we obtained

similar results using data sets 2 and 3 as well. In order to

look into the causality network consistency over data sets,

we plotted the degrees of all neurons for 3 data sets in

Fig. 2. All data sets had similar distributions of degrees and

same ‘hub’ neurons 9 and 15 - neurons with unusually high

degree. Interestingly neurons recorded from a same electrode

were not interacting with one another, but they were causally

influencing on neurons from different electrodes.
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Fig. 2. The degrees of all neurons obtained for Time Window 2 are
illustrated over 3 data sets. Similar distributions of degrees and same hub
neurons 9 and 15 were observed for all 3 data sets.

Fig. 3 shows that across three different data sets, the

numbers of pairs exhibiting statistically significant causal

relationships are highest over a time window 2 of [50, 200]
ms after the visual cues instructing the locations of the

upcoming movements.
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Fig. 3. Number of statistically significant causal interactions at different
timings in relation to the visual cue onset. Each data set showed the
maximum number of causal relations right after visual cue presentations,
Time Window 2.

IV. DISCUSSIONS

Beta oscillations in the MI during motor preparation prop-

agate as waves across the surface of the motor cortex along

dominant spatial axes characteristic of the local circuitry of

the motor cortex [1]. In order to investigate whether we

can observe the same information transfer between neurons,

the Granger causality measure for point process models [8]

was applied to multiple spike train data recorded in the MI.

As shown in Fig. 1, more causal interactions were detected

around visual cues, and the direction of causal interactions

was roughly aligned with simultaneously recorded beta oscil-

lations propagating wave direction [1] and a group of neurons

that exhibited significant power in frequency range of beta

oscillations in their spike rates around cue appearances [9].
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We verified that these results were consistently observed

over 3 data sets. Also, as Fig. 3 illustrates, the maximum

numbers of neuron pairs show statistically significant causal

relationships over [50, 200] ms after appearance of visual

cues around which phase of beta oscillations is locked and

evoked beta traveling waves emerge [9].

Thus it is plausible that the neuron pairs identified in the

current study are the candidates of neurons that travel with

planar waves of beta oscillations in MI.
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