
A Hardware-based Computational Platform for Generalized
Laguerre-Volterra MIMO Model for Neural Activities

Will X. Y. Li, Student Member, IEEE, Rosa H. M. Chan, Student Member, IEEE,
Wei Zhang, Ray C. C. Cheung, Member, IEEE, Dong Song, Member, IEEE and

Theodore W. Berger, Fellow, IEEE

Abstract—A parallelized and pipelined architecture based on
FPGA and a higher-level Self Reconfiguration Platform are
proposed in this paper to model Generalized Laguerre-Volterra
MIMO system essential in identifying the time-varying neural
dynamics underlying spike activities. Our proposed design is
based on the Xilinx Virtex-6 FPGA platform and the processing
core can produce data samples at a speed of 1.33×106/s, which
is 3.1×103 times faster than the corresponding C model running
on an Intel i7-860 Quad Core Processor. The ongoing work of
the construction of the advanced Self Reconfiguration Platform
is presented and initial test results are provided.

I. INTRODUCTION

The underlying spike transformations across brain regions
and biological processes including synaptic transmissions,

dendritic integrations, and spike generations are difficult to
study in vivo because these processes are highly nonlinear,
dynamical and often time-varying [1]. Adaptive filters based
on the point process framework were applied to the nonlinear
dynamical model developed to track time-varying systems
[2][3]. However, the large number of actual neuronal units
involved and long duration of experiments will require an
efficient hardware model that can implement the method and
reduce the computation time for intensive biological data
analysis.

Berger et al. first developed a biomimetic model of the
nonlinear dynamics in the hippocampal brain area of the rat
and implemented it using a Field Programmable Gate Array
(FPGA) [4]. Hsiao et al. later developed VLSI based neural
prosthesis to replace the surgically removed hippocampal sub-
region and fabricated it using the TSMC 0.18um process [5].
They are proofs of concept of cognitive neural prosthesis based
on the stationary single-input single-output (SISO) model. Our
work is based on the time-varying multi-input multi-output
(MIMO) Generalized Laguerre-Volterra Model (GLVM) which
should delineate the neural dynamics in a more comprehensive
and accurate way [6].

The major contribution of this paper consists of 4 parts:
1) We have developed a novel FPGA-based hardware model
to prototype the GLVM. To the best of our knowledge, this
work has never been reported in the previous literatures.

Will X. Y. Li, Wei Zhang and Ray C. C. Cheung are with
the Department of Electronic Engineering, City University of Hong
Kong, Hong Kong SAR, China (email: xiangyuli4@student.cityu.edu.hk;
wezhang6@student.cityu.edu.hk; r.cheung@cityu.edu.hk).

Rosa H. M. Chan, Dong Song and Theodore W. Berger are with the Center
for Neural Engineering, Department of Biomedical Engineering, University of
Southern California, Los Angeles, CA 90089 USA (email: homchan@usc.edu;
dsong@usc.edu; berger@bmsr.usc.edu).

2) Simulation results show the hardware processing core can
achieve a 3.1×103 times data throughput compared with the
software approach.
3) Our hardware platform is extendable to a multi-FPGA-array
architecture.
4) The utilization of the advanced Self Reconfiguration Plat-
form (SRP) is proposed for further animal research.

II. SYSTEM IDENTIFICATION

We propose the integration of 1) Generalized Volterra Model
(GVM), 2) real-time Laguerre expansion, and 3) Steepest
Descent Point Process Filter (SDPPF) to track the time-varying
neural system using both natural spike inputs and outputs.

A MIMO system can be decomposed into a series of
Multiple-Input, Single-Output (MISO) systems. The MISO
models are identical in structure and each module projects
to a separate output.

Each MISO model has physiologically plausible compo-
nents which can be described by the following equations:

w = u(k,x)+a(h,y)+ ε(σ) (1)

and

y =

{
0 where w < θ
1 where w ≥ θ

(2)

The input and output spike trains are denoted by x and
y respectively. The hidden variable w represents the “pre-
threshold membrane potential” of the output neuron. It is the
summation of the “synaptic potential” u, the output spike-
triggered “after-potential” a, and a Gaussian white noise input
ε with standard deviation σ . The noise term models both the
intrinsic noise of the output neuron and contributions from
unobserved inputs. When w crosses the threshold θ , an output
spike is generated and a feedback after-potential a is triggered
which is then added to w. For the first order Volterra kernel
k1 with N inputs, the “synaptic potential” u can be expressed
as

u(t) = k0 +
N

∑
n=1

(k(n)1 ∗ xn)(t). (3)

k0 is the baseline potential when the inputs are absent. k1
is the impulse response of each spike from input x, which are
functions of the time intervals τ between present time and the
previous spikes. The feedback variable a can be expressed as

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 7282

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

a(t) = (h∗ y)(t), (4)

where h is the linear feedback kernel. The spike-triggered
feedback captures the effects of ion channels such as calcium-
activated potassium channels and also captures GABAergic
feedback in the output firing patterns.

The Laguerre Expansion of the Volterra (LEV) kernel
technique is used to reduce the number of open parameters to
be estimated [2]. Using the LEV technique, both feedforward
kernels k and feedback kernel h are expanded through L
orthonormal Laguerre basis functions. Input and output spike
trains x and y are convolved with j-th basis function b j, such
that the convolution products v are expressed as v(n)j = b j ∗ xn

and vh
j = b j ∗ y. Synaptic potential u and after potential a can

be rewritten as:

u(t) = c0 +
N

∑
n=1

L

∑
j=1

c(n)1 v(n)j (t) (5)

and

a(t) =
L

∑
j=1

chvh
j(t). (6)

The convolved functions v include the temporal dynamics.
Another advantage of the Laguerre expansions is that the
convolutions are generated in real-time. Let αn (0 < αn < 1)
be the pole of the Laguerre basis functions of the n-th input
xn.

The convolved product v can also be computed iteratively
at each time t [7]. Let V (n)(t)=[v(n)1 (t) · · · v(n)L (t)],

V (n)(t)A1 =V (n)(t −1)A2 +
√

1−α2
n A3xn(t). (7)

In the above equation, A1 = I+αnI+; A2 = αnI+ I+; A3=[1
0 · · · 0]; I is an L×L identity matrix and I+ is an upper shift
matrix.

Given the recorded input and output spike trains x and y, u
and a can be readily calculated based on the present values of
v and the model coefficients in real-time. The estimated firing
probability P(t) is then calculated using the error function:

P(t) = 0.5−0.5er f
(

θ −u(t)−a(t)√
2σ

)
. (8)

Without the loss of generality, θ and σ can be set to 0 and
1, respectively [2]. The model parameters to be estimated are
the Laguerre coefficients C. Using the steepest descent point
process filtering algorithm (SDPPF) [8], the parameter vector
C(t) is updated iteratively at each time step t:

C(t) =C(t −1)+R
[(

∂ logP(t)
∂C

)′
(y(t)−P(t))

]
C(t−1)

, (9)

where R is learning rate. During adaptive parameter estimation,
the gradient can also be generated in real-time. The derivatives
with respect to the Laguerre coefficients are given as the
products of v that are calculated in (7), such as ∂u(t)/∂c0 = 1,

∂u(t)/∂c(n)1 (j) = v(n)j (t), ∂a(t)/∂ch(j) = vh
j(t). After obser-

vation of actual output spike train and prediction of firing
probability in (8), R acts as the learning rate for the parameter
estimations in (9). The estimated Laguerre coefficients are
used to reconstruct the feedforward and feedback kernels [2].

III. GENERALIZED VOLTERRA MODEL HARDWARE
ARCHITECTURE

A major focus of this work is to utilize the intrinsic
parallelism of modern FPGA device and dedicated IPs to
prototype the GLVM, calculate the important coefficients for
data analysis, while at the same time, achieve desirable chip
resource utilization and data throughput.

PC

Et
he

rn
et

 IP X

Y
HU1 U2 w U3 P U4

BRAM

C

Design component

Register (array)

Data path

Parameter feedback

Fig. 1. Overview of the hardware architecture (U1: Convolution Unit;
U2: Multiplication and Accumulation Unit; U3: Firing Probability
Calculation Unit; U4: Laguerre Coefficients Updating Unit)

An overview of the hardware architecture is shown in Fig.
1. In the figure, U1-U4 are important processing units which
combined forms the processing core. U1 and U2 are designed
to update the pre-threshold membrane potential w. U3 calcu-
lates the firing probability P while U4 is the component which
updates the Laguerre coefficients C. A [1+(N+1)×L] register
array stores the augmented horizontal vector H. The values of
the input signal X and Y (Y is the feedback of neural output
y) are previously stored in the .txt file (which is converted
from the .mat file from Matlab). They are read and sent to
the FPGA via Ethernet connection. The Ethernet IP in the
FPGA receives the forward-transmitted data and relays the
data to the processing core. The processing core performs DSP,
calculates the important coefficients in our neural model, and
stores the calculation results. The results are then sent back
to the Ethernet core and back-forwarded to the PC end. The
PC keeps track of the received data and saves them in regular
time intervals.

The w updating unit contains N+1 Leading Zeros Detector
(LZD) components, N +1 Vector Updating (VU) components
and one Multiplication and Accumulation (MAC) component.
Neurons in some parts of the brain, such as the hippocampus,
have low firing frequency; so both X and Y could be sparse.
The LZD component is designed to detect the zero elements in
the input vectors. If zeros are detected, part of or the whole VU
circuit, which is designed to perform the convolution function,

7283

TABLE I
SYSTEM RESOURCE UTILIZATION

Utilization Available

LUTs 216,766 (75.5%) 297,600
FFs 381,371 (64%) 595,200

DSPs 2016 (100%) 2016
BRAMs 1, 6 or 12 1064

is hold. Signals will bypass the VU component and the H
registers will be reset directly. This saves considerable amount
of power given that the frequent updating of the VU registers
will be prevented. New values of the H will be acquired
after completing the convolutional routine of VU. The MAC
component is of tree structure consisting of stages of adders.
The products of H and C are added through stages of adder
arrays. The size of the adder array shrinks by half from the
utmost leaves to the root stage by stage. The value of w is
acquired at the root.

U3 is designed to calculate estimated firing probability P,
its gradient and ∂ logP(t)/∂C in (9). The calculation intensive
stage in hardware includes the implementation of the error
function erf(x) and the exponential function. Here, we trans-
forms the calculation of the error function into the calculation
of the exponential function by using the approximation for the
error function reported in recent literature [9] as

er f (A)∼=
√

1− e−
4
π A2

. (10)

Given that the variable in our current design model is limited
to a certain range near the zero point, we can easily use the
truncations of the Taylor series to do effective calculation.

IV. RESULTS AND DISCUSSIONS

The design is partitioned in a sequence of two stages of
pipelines. This division method is decided by the nature of the
GLV algorithm itself. In the first stage, we complete updating
the value of the augmented horizontal vector with the new
inputs of neural spikings; in the second stage, we complete
updating the Laguerre coefficients C. The calculation of the
new Laguerre coefficients from the previously stored values
of H and C can be divided into several time intervals during
which values of important parameters such as w and P are
generated and stored. In order to facilitate the later P & R,
registers or register arrays are inserted into the combinational
routes. Also, we assign the floating point arithmetic cores
different latency values when configuring them with the Xilinx
Core Generator tool.

We compare the system performance (without interface)
with the software approach using C to process a same group
of data. The PC running the C program boasts an Intel i7-860
Quad Core 2.8G CPU, 4GB memory and a Gigabit Ethernet
interface with jumbo frame enabled. The experimental result
shows that the Xilinx Virtex-6 XC6VSX475T FPGA-based
hardware platform, can achieve a data throughput of 1.33×106

data frames/s while in software, this value can only come to

431.98 data frames/s. The FPGA resource utilization is shown
in Table I.

Under our proposed hardware structure, we take 64 inputs
from the X input set and 1 input from the Y input set for
1 round of convolution in 1 processing cycle. It is easy to
see that we can use more FPGAs to treat more inputs from
Y together with the same 64 inputs from X for higher-level
parallel processing. The bandwidth cost of data transfer will
be amortized and further speed up is possible.

We emphasize the work of the construction of the hard-
ware IP library. It is the first step towards our future Self
Reconfiguration Platform (SRP) [10]. The coming animal
research may require real-time analysis of data under different
application models. The hardware structure is also preferred to
be real-time adaptive to the model changes and dynamically
reconfigure itself to meet the new application needs, while at
the same time, achieve the optimal compromise with regard to
speed, resource utilization and power consumption. In the SRP,
specific application information is transmitted to the FPGA
via the external configuration access port (ECAP). And some
specific circuits on the logic array can read the information and
control other parts of the FPGA via the internal configuration
access port (ICAP). It utilizes the resources of the hardware
IP library to partially and dynamically reconfigure the device
to best meet the application demands.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

er
f(

A
)

I II III

Fig. 2. Region division strategy for error function calculation. A is the input
parameter.

The following attempt serves as a good example as an initial
testing of the SRP. We may notice that when implementing
the error function calculation circuit, we use Taylor series
expansion (TSE) as the mathematical grounds. It is a very
efficient approach, but one notable defect is that the chip
resource utilization will increase dramatically when the data
range expands. This is due to the fast adding up of items
of the Taylor series. One counterplan is to use BRAM based
partial table lookup, which is an advanced measure of the full
LUT that write all the entries of the (x, erf (x)) mapping into a
BRAM with proper data step size. We divide the error function
curve into 3 regions as shown in Fig. 2. In Region I we use
linear fit. This saves storage space. Instead of BRAM, here a

7284

TABLE II
PROCESSING TIME OF EACH STAGE

Parameter Time

T 1 7.50ms
Hardware T 2 5.37ms

T d +Tr 2.4s
Software T A 23.15s

(C) T B 23.15s

simple DSP multiplier can achieve. In the Region II, we use
traditional full LUT. And in Region III, we also use LUT; but
as the gradient of the curve decreases to a much smaller scale,
the data step size in the LUT could be relaxed without much
precision lost. For absolute error less than 10−4, the optimal
point to separate Region I and II is (0.0932, erf(0.0932)) and
the corresponding linear approximation is g(A) = 1.1254A for
A <| 0.0932 |.

So after compilation, translation, mapping and P&R, the
TSE based implementation and BRAM based implementation
serve as two different bitstreams which are pre-stored in our
host PC. We can first program the FPGA using the TSE
architecture. After processing 10,000 data frames, the FPGA
will send a request to the host PC for the reprogramming
bitstream which is based on the partial LUT technique. Then
the bitstream will be downloaded to the FPGA via Ethernet
connection and the device will be reconfigured. The same
10,000 data frames will be processed afterward. We calcu-
late the total processing time Ttotal of this procedure to be
Ttotal = T1 +Td +Tr +T2. T1 and T2 are the processing time of
the TSE model and the partial LUT based model respectively;
Td is the downloading time and Tr the reconfiguration time as
shown in Table II.

Also, we can calculate the minimal data size for processing
if the hardware approach still takes an advantage. Let us
assume that when the FPGA is reconfigured, the software
will also shift from using one algorithm to another, namely,
algorithm A to algorithm B (in our case, A and B are the
same). If the hardware approach is preferred, the following
equation must be satisfied:

T1 +Td +Tr +T2 < TA +TB. (11)

TA and TB are the execution time of the software. Let us
assume the downloading and reconfiguring time do not change
(and actually they vary little), we will have:

D
Tp1

+
D

Tp2
+Td +Tr <

D
TpA

+
D

TpB
(12)

Tp is for data throughput. Based on the above equation and
analysis, we can calculate the worst case data size for hardware
implementation is Dmin = 33.67kB, that equals to only 518
data frames. Also, from the above analysis, we can see that
the hardware platform is faster than the software model in our
general applications.

In case that the host PC and the SRP are not in the same
location, then remote runtime reconfiguring is needed. In this
case we can use the Xilinx Partial Reconfiguration Tool Kit
(XPART) which is built on top of the ICAP API. The XPART
is hardware independent are can be compiled for an embedded
OS running on the SPR like uClinux. This offers our engineers
a good opportunity to request remote bitstream using the
HTTP or FTP protocol, debug on a standard workstation and
manipulate the bitstream. This is also a research focus of
our future work. The SRP shows great potential and will
facilitate the analysis of neural spike train data due to its great
adaptability and extensibility. The processing ability of the
hardware platform will help us explorer the highly nonlinear,
dynamical and time-varying biological processes of the animal
brain.

V. ACKNOWLEDGEMENT

This work is supported by the City University of Hong Kong
Start-up Grant 7200179.

REFERENCES

[1] M. D. Linderman, G. Santhanam, C. T. Kemere, V. Gilja, S. O’Driscoll,
B. M. Yu, A. Afshar, S. I. Ryu, K. V. Shenoy, and T. H. Meng, “Signal
processing challenges for neural prostheses,” IEEE Signal Processing
Magazine, vol. 25, pp. 18–28, 2008.

[2] R. H. M. Chan, D. Song, and T. W. Berger, “Tracking temporal evolution
of nonlinear dynamics in hippocampus using time-varying volterra
kernels,” Proceedings of the 30th IEEE EMBS Annual International
Conference, vol. 54, pp. 4996–4999, 2008.

[3] R. H. M. Chan, D. Song, A. Goonawardena, S. Bough, J. Sesay, R. E.
Hampson, S. A. Deadwyler, and T. W. Berger, “Tracking hippocampal
population nonlinear dynamics in rats learning a memory-dependnet
task,” Proceedings of the 33rd IEEE EMBS Annual International Con-
ference.

[4] T. W. Berger, A. Ahuja, S. H. Courellis, S. A. Deadwyler, G. Erin-
jippurath, G. A. Gerhardt, G. Gholmieh, J. J. Granacki, R. Hampson,
M. C. Hsiao, J. LaCoss, V. Z. Marmarelis, P. Nasiatka, V. Srinivasan,
D. Song, A. R. Tanguay, and J. Wills, “Restoring lost cognitive function:
hippocampal-cortical neural prostheses,” IEEE Engineering in Medicine
and Biology Magazine, vol. 24, pp. 30–44, 2005.

[5] M. C. Hsiao, C. H. Chan, V. Srinivasan, A. Ahuja, G. Erinjippurath, T. P.
Zanos, G. Gholmieh, D. Song, J. D. Wills, J. LaCoss, S. Courellis, A. R.
Tanguay, J. J. Granacki, V. Z. Marmarelis, and T. W. Berger, “VLSI
implementation of a nonlinear neuronal model: a ‘neural prosthesis’
to restore hippocampal trisynaptic dynamics,” Proceedings of the 28th
IEEE EMBS Annual International Conference, pp. 4396–4399, 2006.

[6] D. Song, R. H. M. Chan, V. Z. Marmarelis, R. E. Hampson, S. A. Dead-
wyler, and T. W. Berger, “Nonlinear dynamic modeling of spike train
transformations for hippocampal-cortical prostheses,” IEEE Transactions
on Biomedical Engineering, vol. 54, pp. 1053–1066, 2007.

[7] C. Boukis, D. P. Mandic, A. G. Constantinides, and L. C. Polymenakos,
“A novel algorithm for the adaptation of the pole of laguerre filters,”
IEEE Signal Processing Letters, vol. 13, pp. 429–432, 2006.

[8] U. T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown, “Dy-
namic analysis of neural encoding by point process adaptive filtering,”
Neural Computation, vol. 16, pp. 971–998, 2004.

[9] M. Nandagopal, S. Sen, and A. Rawat, “A note on the error function,”
Computing in Science & Engineering, vol. 12, no. 4, pp. 84–88, 2010.

[10] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundarara-
jan, “A self-reconfiguring platform,” Proceedings of the 13th Inter-
national Conference on Field Programmable Logic and Applications
(FPL’03), pp. 565–574, 2003.

7285

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

