
  

 

Abstract—The crucial engagement of the subthalamic 
nucleus (STN) with the neurosurgical procedure of deep brain 
stimulation (DBS) that alleviates medically intractable 
Parkinsonian tremor augments the need to refine our current 
understanding of STN. To enhance the efficacy of DBS as a 
result of precise targeting, STN boundaries are accurately 
mapped using extracellular microelectrode recordings (MERs). 
We utilized the intranuclear MER to acquire the local field 
potential (LFP) and drive an Izhikevich model of an STN 
neuron. Using the model as the test bed for clinically acquired 
data, we demonstrated that stimulation of the STN neuron 
produces excitatory responses that tonically increase its 
average firing rate and alter the pattern of its neuronal activity. 
We also found that the spiking rhythm increases linearly with 
the increase of amplitude, frequency, and duration of the DBS 
pulse, inside the clinical range. Our results are in agreement 
with the current hypothesis that DBS increases the firing rate 
of STN and masks its pathological bursting firing pattern.  

I. INTRODUCTION 

IGH - frequency deep brain stimulation (DBS) of the 
basal ganglia is an effective therapeutic avenue for 

patients with medically intractable movement disorders. It 
involves implanting an electrode into the target area within 
the brain and connecting it to an internal pulse generator 
usually located in the chest area. The insertion of an 
electrode into one of the pivotal nuclei of the basal ganglia, 
the subthalamic nucleus (STN), is becoming a notable 
treatment of the cardinal motor features of Parkinson’s 
disease (PD) (resting tremor, rigidity, bradykinesia) [1] since 
the clinical benefits of the procedure are analogous to those 
achieved by surgical lesioning ([2], [3]). Although DBS has 
been effective in the treatment of many movement disorders 
and is rapidly being explored for the treatment of other 
neurologic disorders, the understanding of its mechanisms in 
the cellular level remains unclear and continues to be 
debated in the scientific community. However, it is the 
identification of these mechanisms on which the 
optimization and the efficacy of DBS treatment will depend 
on. 

Currently, the efficacy of the method is macroscopically 
guarded by the precise targeting of a microelectrode within 
the STN. The exact location is usually estimated by a 
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neurologist during surgery, observing the neuronal activity 
which is recorded from the nearby area, displayed on an 
oscilloscope and usually played on an audio monitor.  Oddly 
enough, this procedure provides a unique opportunity for 
recording neural activity as close to its generator as possible 
allowing maximal spatial resolution and accuracy for the 
microelectrode recordings (MERs).  

Contradictory hypotheses for the therapeutic effect of 
DBS to various medical conditions, including intractable 
tremor [4], dystonia [5], epilepsy [6] and obsessive-
compulsive disorder [7], led to long-standing scientific 
disputes. Trying to answer how high-frequency DBS works 
leads to a paradox of how stimulation (traditionally believed 
to activate neurons) can result in similar therapeutic 
outcomes as lesioning target structures. In general, there 
exist two main philosophies for DBS explanation: (1) DBS 
generates a functional ablation by suppressing or inhibiting 
the structure being stimulated or (2) DBS results in 
activation of the stimulated structures that are transmitted 
throughout the network [8]. In line with these philosophies, 
there exist four general hypotheses that are used to explain 
the mechanisms of DBS: (1) depolarization blockade [9]; (2) 
synaptic inhibition [10]; (3) synaptic depression [11]; and 
(4) stimulation-induced modulation of pathologic network 
activity [12]. However, it seems that the therapeutic 
mechanisms underlying DBS most likely represent a 
combination of several phenomena [13]. 

The aim of the present study is to utilize the local field 
potentials (LFPs) acquired from single neuron MERs to 
create an Izhikevich model of an STN neural cell. We 
introduce for the first time the superposition of a DBS signal 
and the LFP to drive the Izhikevich model. The simulation 
results can be used to shed some light into the effects of the 
DBS on the cellular level.  

II. MODELING THE STN NEURON ACTIVITY 

A. Single neuron MER analysis 

MER’s acquisition, processing and analysis are 
analytically described elsewhere ([14]-[15]). Data used in 
this study were obtained from a PD patient, during DBS 
operation. Two single neuron MERs are included in this 
study. The signals, acquired around the final stimulation 
point (+/- 1mm) inside the STN, exhibited the typical STN 
discharge pattern (intense irregular neuronal activity with 
increased background activity and bursting spike trains 

Addition of deep brain stimulation signal to a local field potential 
driven Izhikevich model masks the pathological firing pattern of an 

STN neuron    

Kostis P. Michmizos, Student Member IEEE, Konstantina S. Nikita, Senior Member, IEEE 

H

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 7290

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

usually present [16]).  
Off-line data processing and analysis were conducted by 

custom-made MATLab (The MathWorks, Natick, MA) 
code. An FIR equiripple low-pass (LP) filter of order of 
2100 samples, with a pass-band of [0 100] Hz and a stop-
band of [0.15 12] kHz and p-p rippling in passband equal to 
2 x 10-6 db was used to acquire the LFP signal. The short 
duration of an AP (about 1 ms) was ignored. Hence, an AP 
sequence was characterized simply by a binary signal in 
which the ones represent the times when spikes occurred. 

B. The Izhikevich model neuron 

The differential equations that describe the Izhikevich 
model are [17]: 
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with the auxiliary after-spike resetting  
If ݒ  30	mV, then	ݒ ← ܿ	and	ݑ ← ݑ  ݀. (3) 

In the above equations, ܽ, ܾ, ܿ, and	݀ are abstract 
parameters of the model discussed in [17], ݒ is the 
membrane voltage potential of the neuron, ݑ represents a 
membrane recovery variable providing negative feedback to 
 For the Izhikevich model to exhibit a discharge mode that .ݒ
matches an STN glutamatergic projection neuron, its 
parameter values should be set as follows: ܽ ൌ 0.005, ܾ ൌ
0.265, ܿ ൌ െ65, ݀ ൌ 1.5 [18]. Alternatively, the parameters 
defined for tonic spiking ሺܽ ൌ 0.02, ܾ ൌ 0.2, ܿ ൌ െ65, ݀ ൌ
6ሻሾ17ሿ may also be used with comparable accuracy.  

In the model, synaptic currents or injected dc-currents are 
delivered via the variable I. If we assume that the source 
region volume is much smaller than the distance to the 
microelectrode and that the extracellular fluid is an infinite, 
homogeneous, isotropic, and purely resistive volume 
conductor, the LFP measured externally to a source region 
could be described as: 

ሻݐሺܲܨܮ ൌ
1
ߪߨ4
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(4) 

where ܫሺݐሻ is the current sources that contribute to the 
recorded LFP, ࢘ is the distance of each current source to the 
microelectrode, and σ is the macroscopic electrical 
conductivity of the extracellular space. The current, I, 
injected into the Izhikevich model, can now be described by 
the linear transformation ܫ ൌ ߢ ∙ ߢ where ܲܨܮ ൌ  In .|࢘|ߪߨ4
other words, we assume that the sum of the currents in the 
dendritic sites that results to the recorded LFP is directly 
proportional to the LFP. 

C. Model validation 

We quantitatively compare the agreement between the 
spike train predicted from the model and the spike train 
detected from the MERs. The first approach is to plot the 
empirical cumulative distribution function (CDF) of the 
detected spiking times against the CDF of the predicted 
spiking times. If the model accurately predicts the recorded 
spikes, then the plot follows a 45° line. If the model fails to 

account for some aspect of the spiking behavior, then that 
lack of fit is reflected in the plot as a significant deviation 
from the 45° line.  

 A second approach is to estimate the agreement 
between the model and data by constructing a sorted 
interspike interval (ISI) plot. The predicted sorted ISIs are 
plotted against those acquired by MERs. These plots are 
used for visualizing which ISIs of the recorded data are well 
captured and which are poorly captured by the model. Such 
comparisons are especially useful in testing the ability of the 
model to predict valuable characteristics of an STN neuron, 
such as the onset and the recession of a bursting spike train. 

Finally, we are interested not only in the exact timing of 
each spike, but also in the rhythm of the neural activity. In 
order to validate the model in terms of rhythm prediction, we 
calculated the number of spikes present in adjacent, non-
overlapping bins. The bin width, for this study, was kept 
equal to 5 ms.  

D. Superposition of the DBS signal 

In order to introduce the DBS signal to the Izhikevich 
model, we use the relationship [19]: 
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where IDBS is the stimulation current, iDBS corresponds to 
stimulation amplitude, ρDBS to stimulation period, and δDBS to 
the duration of each impulse. H is the Heaviside function. 
The general therapeutic stimulation parameters for DBS 
(monopolar cathodic; 1 to 5 V stimulus amplitude; 60 to 200 
μs stimulus pulse duration; 120 to 180 Hz stimulus 
frequency) have been derived primarily by trial and error 
[20]. 

III. RESULTS 

Izhikevich models of two single neuron STN MERs 
(named MER-1 and MER-2, respectively), driven by LFPs, 
were proven to predict the spiking activity of both neurons 
very accurately (Fig. 1). Spiking neuron and STN neuron 
parameters were used for modeling MER-1 and MER-2, 
respectively. Value of κ, estimated to give the minimum 
MSE, was 8 and 4 for MER-1 and MER-2, respectively. In 
both cases, the model predicted the rhythm with high 
accuracy (for MER-1, rhythm MSE = 1.04 spikes/50 ms and 
for MER-2, rhythm MSE = 1.07 spikes/50 ms). For MER-1 
and MER-2, the CDF plot remained inside the 92% and 95% 
confidence intervals, respectively. For both models, the 
predicted ISIs followed very accurately the recorded ones. 

A constant voltage DBS signal was then superimposed to 
the LFPs that drive the above models. The voltage was 
transformed to iDBS using the same κ, as before. On-DBS 
state of neuron was simulated using parameters that lie well 
inside the clinical settings of DBS.  

Two simulation results, with the addition of a DBS signal 
(voltage amplitude 4V, pulse frequency 180 Hz and pulse 
duration 200 μs) are shown in Fig. 2. For MER-1  
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affects neural activity in output nuclei, as shown in the 
simulation results. 

Our simulation results allow us to adopt the hypothesis 
that DBS modulates the activity of the basal ganglia network 
to “mask” the pathological firing patterns believed to 
characterize the Parkinsonian state ([8], [13], [19], [23]). 
Specifically, Parkinsonian neurons are more synchronized, 
rhythmic, and burstlike, when compared to normal neurons 
[25]. Rubin and Terman also demonstrated that a DBS 
signal, analogous to the one used in the present study, can 
elicit similarly periodic, high-frequency firing of STN and 
GPi cells, thereby replacing Parkinsonian firing with a mask 
of tonic activity [19]. The authors also show that this tonic 
Gpi activity restores the simulated function of downstream 
(thalamocortical) cells that leads to the alleviation of the 
motor symptoms of PD. 

V.  CONCLUSION 

In this paper, we showed that an Izhikevich model, driven 
by intranuclear LFPs of a PD patient, simulates accurately 
the timing and rhythm of single neuron STN spikes. A DBS 
pulse signal with clinically adjusted parameters was also 
include in the model in order to prove that the spiking 
rhythm of an STN neuron increases during ON-DBS state. 
We also demonstrated that DBS eliminates the bursting 
pattern observable in STN neurons of PD patients, by 
introducing regularly fabricated spikes. Our simulation 
results are in agreement with the current hypothesis that 
DBS masks the pathological firing by altering the firing 
pattern of the STN neurons.  
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