
  

  

Abstract—Spike detection from high data rate neural 
recordings is desired to ease the bandwidth bottleneck of 
bio-telemetry. An appropriate spike detection method should be 
able to detect spikes under low signal-to-noise ratio (SNR) while 
meeting the power and area constraints of implantation. This 
paper introduces a spike detection system utilizing lifting-based 
stationary wavelet transform (SWT) that decomposes neural 
signals into 2 levels using ‘symmlet2’ wavelet basis. This 
approach enables accurate spike detection down to an SNR of 
only 2. The lifting-based SWT architecture permits a hardware 
implementation consuming only 6.6 μW power and 0.07mm2 

area for 32 channels with 3.2 MHz master clock. 

I. INTRODUCTION 
HE development of microelectrode arrays allows 
neuroscientists to record up to 100 extracellular neural 

signals simultaneously [1]. Wireless transmission of 
multichannel neural signals without loss of information 
requires tens of Mbps in bandwidth. However, reliable 
bio-telemetry techniques typically achieve bandwidths of less 
than 10 Mbps, which presents a bottleneck to data rate of 
neural signals. Furthermore, transmission at high data rate 
consumes significant power that must be managed to avoid 
damage to living tissue.  

For scientific research and neuroprosthetic applications, 
the neurologically relevant information is contained within 
action potentials or spikes fired by neurons. It has been shown 
that the firing rate of spikes is typically between 10-100Hz 
[2], indicating that spikes alone provide a sparse 
representation of neural signals. A potential solution to ease 
transmission bandwidth is to perform online spike detection 
and transmit only spike information instead of raw data. For 
example, at a data sampling rate of 25 Ksamples/sec per 
channel with 10-bit resolution, spike extraction would reduce 
the bandwidth more than 90%. However, the recorded neural 
signals consist of spikes and background noise. Experimental 
observations show that the signal-to-noise ratio (SNR) varies 
among channels in a probe and changes day by day [3], where 
the SNR is defined as  

 SNR = 
peak to peak amplitude

2×standard deviation of noise  (1) 

In practice, sometimes less than 50% of the total recording 
sites are considered to have good SNR (SNR > 4) [3]. As a 
result, it is necessary to develop a spike detection algorithm 
that is efficient under low SNR.  

An evaluation of computationally efficient spike detection 
algorithms has been reported recently [2]. Absolute threshold 
 

and non-linear energy operator (NEO) are two 
computationally efficient methods that have been 
implemented in integrated circuits [4-5]; however, the 
performance of both methods degrades severely as SNR 
becomes poor. In contrast, template matching [2] is very 
effective but is too computationally intense for implantable 
circuit implementation. Similarly, spike detection utilizing 
stationary wavelet transform (SWT) has demonstrated good 
performance [6], but the algorithm is not suitable for 
realization within an implantable circuit. 

This paper introduces a hardware-efficient spike detection 
system utilizing a lifting-based architecture for SWT. The 
presented SWT-based spike detection system outperforms all 
reported implant-capable methods, performs exceptionally 
well at low SNR, and can be implemented within the power 
and area constraints of implantation. 

II. WAVELET TRANSFORMS FOR SPIKE DETECTION 

A. DWT Versus SWT 
Wavelet transform (WT) has been applied to biomedical 

signals for denoising, compression and detection. WT 
provides a large degree of freedom to study signals by 
choosing different wavelet bases and decomposing signals 
into different frequency sub-bands. Wavelet-based spike 
detection applies different threshold values to each level of 
the detail coefficients. Coefficients with an absolute value 
greater than the threshold are thought to indicate spikes. SWT 
is an implementation of WT that overcomes the shift variance 
issue in discrete wavelet transform (DWT) at the cost of 
increased computational complexity. The choices of wavelet 
basis and decomposition levels have a great impact on both 
the quality of results and the efficiency of hardware 
implementation. 

Our previous work shows that DWT using ‘symmlet4’ 
basis is a hardware efficient way to compress signals to ease 
the bandwidth bottleneck of bio-telemetry [10]. The 
compressed wavelet coefficients can be transmitted and 
reconstructed in computers with little loss of information. 
However, DWT suffers a key limitation in terms of shift 
variance. Because coefficients are decimated by two at each 
level, it is possible that the odd decimation coefficients of 
spikes have a large distinction from even coefficients causing 
shift variance An intuitive way to observe the effect of shift 
variance on spike detection is illustrated in Fig. 1. The signal 
is decomposed into 2 levels with odd and even decimation 
shown separately. The spike can be observed clearly in odd 
decimation while it is difficult to see in either level of the 
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even decimation. Because of shift variance, it is equally 
possible that spikes could be missed by observing either odd 
or even samples. 

For a typical 25 KHz sampling rate, the sampling point can 
be a random value between two samples range from 0 to 40 
µS. A good performance detector should be robust to any 
time shift (phase delay) in this range. Simulated neural data 
was used to test the detection accuracy for DWT and SWT as 
the sampling point varies across the sample interval. Here, 
detection accuracy is defined as  

 Accuracy = 
# of true detection

# of total true spikes + # of false positives (2) 

The data set was composed of 150 hundred thousand samples 
containing around 300 spikes under SNR equal to 3, where 
the SNR is defined in (1). Both DWT and SWT decomposed 
signals into 2 levels while using optimal bases: ‘symmlet4’ 
for DWT and ‘symmlet2’ for SWT. Fig. 2 shows the 
detection accuracy of SWT is very high and almost constant 
over the range of time shift, which is expected because SWT 
is undecimated at each level and the coefficients are shift 
invariant. However, the performance of DWT changes as a 
function of time shift, and the difference between the best and 
worst case is as large as 30%. In practical applications, only 
the worst case result can be expected, and thus SWT 
significantly outperforms DWT in real time spike detection. 

B. Choice of Levels  
The SWT decomposition process can be expressed as  
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where at each level the approximation coefficients aj are 
convolved with a half band low pass filter hj generating the 
approximation coefficients aj+1 and a half band high pass filter 
gj generating the detail coefficients dj+1 for the next level. The 
low and high pass filters are upsampled at each level. (3) 
describes the SWT cutting the approximation coefficients 
into two half bands at each decomposition. 

Most wavelet methods for spike detection decompose 
neural signals into more than 4 levels [6-7]. However, high 
level detail coefficients correspond to low frequency signal 
bands. A recent study shows that the noise associated with 
recorded neural signal exhibits a frequency dependency that 
can be approximated as 1/fα [8]. Fig. 3. plots a noise power 
spectrum of data recorded from a rat motor cortex [3]. The 
noise power of 40 dB attenuates at frequencies above 5 KHz. 
Spikes are considered as instantaneous energy changes at 
high frequency, and to detect spikes it is preferable to 
discriminate spikes from noise within the high frequency 
band. Considering the relative frequency responses of 
background noise and spikes, it is ineffective to use 
information from higher decomposition levels. For a typical 
neural signal digitized at 25 Ksamples/sec, the wavelet 

decomposition of two levels of detail coefficients covers a 
frequency band from 3.125 KHz to 12.5 KHz. In this case, 
wavelet decomposition coefficients beyond level 2 provide 
negligible information for detecting spikes.  

III. HARDWARE DESIGN 

A. Lifting Architecture and Wavelet Basis 
The lifting scheme for computing DWT has been well 

developed. It provides fast computation and efficient 
hardware realization. Fig. 4 (a) describes the lifting 
architecture concept for DWT where coefficients are 
predicted and updated by factorizing polyphase matrix E(z) of 
low and high pass filters into N steps to obtain Laurent 
polynomials P(z) and U(z) as  
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The lifting scheme of SWT is based on the DWT scheme 
without splitting data into odd and even samples [9]. 
However, the delay of each sample has to be doubled as 
shown in Fig. 2 (b). The lifting process of SWT can be 
expressed as  
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Because the filters have to be upsampled by 2 at each level as 
expressed in (3), the lifting process also needs to be changed 
accordingly at each level as 

 

0 50 100 150
-1

0

1

Time (Samples)

-0.2

0

0.2

0 50 100 150
-0.5

0

0.5

Time (Samples)
0 50 100 150

Time (Samples)

DWT: odd decimation DWT: even decimation

Signal

d1 d1

d2d2

 
Fig. 1. Odd and even decimation of neural signals into 2 levels using DWT
with ‘symmlet4’ basis. Top shows the original signal with spike indicated. 
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Fig. 2. Detection accuracy of DWT and SWT against time shift for SNR=3
under 25 KHz sampling rate. 
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The delay elements are realized in hardware as registers. 
From (5) and (6), the number of registers required at each 
level is equal to (N+1)×L, where N is the length of wavelet 
filters and L is the level index. Registers consume 
considerable area in integrated circuits; thus an implantable 
design for multichannel applications requires the filter length 
to be short. Although ‘haar’ wavelet has the shortest length, 
its shape has poor similarity to neural spikes and thus it is not 
suitable for spike detection. To address this design tradeoff, 
the ‘symmlet2’ basis was chosen; it has a reasonable filter 
length of four while requiring less than half of the hardware 
resources as other bases. As shown in Section IV, ‘symmlet2’ 
only slightly degrades detection accuracy while providing a 
significant benefit in terms of hardware efficiency.  

For the chosen 2 levels of decomposition and the 
‘symmlet2’ basis, the lifting steps of SWT are 
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where x is input signal, Q is an intermediate value, B0-B3 are 
constant coefficients and the subscripts of x, Q, a, d represent 
the level. (7) implies that 15 delay samples need to be stored 
to complete a 2 level calculation for one input sample, 
including 3 for x, 2 for Q1, 6 for a1 and 4 for Q1. The signal 
flow diagram of the lifting steps is described in Fig. 5.  

To detect spikes, each detail level coefficient, d1 and d2, is 
compared to a carefully chosen threshold value, and a 
coefficient greater than its threshold value is considered to 
indicate a spike. Threshold values are set to a scaled version 
of the standard deviation of d1 and d2 separately based on the 

low probability that background noise exceeds this threshold 
[4]. 

B. System design 
To implement the data flow of Fig. 3 in hardware, the SWT 

system shown in Fig. 6 (a) was developed based on our 
previous design of an area-power efficient VLSI architecture 
for lifting based DWT [10]. The computation core (CC) is 
used to calculate the lifting steps in (7). The CC can be 
implemented using one multiplier and one adder as shown in 
Fig. 6 (b) to sequentially evaluate each expression in (7). Two 
CCs are required to calculate 2 levels decomposition in a 
pipeline. The channel/level memory stores 15 delay elements 
for each channel. The controller manages the computation 
sequence for the CC and works with the address generator to 
controls memory access. The system requires four clock 
cycles to complete computation of one sample per channel. 
Thus the master clock should be at least 4×fs×Nch, where fs is 
the sampling rate and Nch is the number of channels. 

IV. RESULTS 
Synthetic neural signals were generated using a neural 

signal simulator with ten real recorded spike pattern 
templates for which the recording method is described in 
[11]. Fig. 7 shows ten channels used for simulation, each 
composed of three different spike templates. Spike detection 
accuracy of the new SWT-based method was compared with 
absolute threshold (AT), NEO and DWT methods under 
different SNRs. As shown in Fig. 8, SWT achieves above 
90% accuracy even at SNR=2. The performance of NEO is 
15% less than SWT at low SNRs. Due to its shift variance, 
DWT cannot successfully detect all spikes even at high 
SNRs.  

For 32 channels with a 3.2 MHz clock frequency, the SWT 
architecture described in Section III was implemented in 
CMOS using Verilog mapped to a 130nm standard cell 
library. Table I lists the simulated power and layout area for 
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Fig. 3. Noise power spectrum recorded from a rat motor cortex. 

 
 (a) (b) 

Fig.4. (a) Lifting scheme of DWT. (b) Lifting scheme of SWT. 

 
Fig. 5. Data flow diagram of SWT with two level decomposition using 
symmlet2 wavelet basis.

  
(a) (b) 

Fig. 6. (a) System architecture of SWT. (b) CC architecture. 
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major blocks and the fully functional complete system. The 
CC dissipates 70% of total power while memory occupies 
85% of total area. The whole SWT block consumes only 6.6 
μW and 0.07mm2 and thus could easily be implemented 
within a neural recording implant. 

Our previous work using SWT for spike detection with the 
‘symmlet4’ basis demonstrated good detection accuracy [12]. 
Fig. 9 (a) compares both bases in terms of detection accuracy. 
Although ‘symmlet4’ performs slightly better than 
‘symmlet2’, its implementation requires twice as many 
registers for storing the delay samples and has a major impact 
on required area. To illustrate the overall performance 
comparison, a normalized figure of merit (FOM) described by 

 FOM = 
detection accuracy

power×area   (8) 

is plotted in Fig. 9 (b) and shows ‘symmlet2’ is significantly 
better than ‘symmlet4’ for all SNRs. 

V. CONCLUSION 
A neural spike detection method based on SWT was 

presented along with an efficient VLSI implementation 
utilizing the lifting scheme. Optimized for neural data noise 
characteristic and implantable hardware requirements, the 
SWT spike detector realizes 2 level decomposition and uses 
the ‘symmlet2’ basis. The new system shows the best 
reported spike detection performance even for neural signals 
with low SNR. The power and area efficient design make it 
suitable for implantation within a wireless neural recording 
array. 
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Fig. 7. Ten spike channels containing three spikes in each channel. All
spikes are from one of ten spike templates. 
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Fig. 8. Detection accuracy vs. SNR for AT, NEO, DWT and SWT. 

TABLE I 
POWER AND AREA VALUES FOR 32 CHANNELS AT 3.2 MHZ MASTER CLOCK 

 Power  
   (μW)       percentage 

Area  
(μm2)      percentage 

Computation Core 4.35 66% 9362 14% 
Memory 1.02 15% 57277 83.7% 

Controller 0.59 9% 230 0.3% 
Address Generator 0.63 10% 1586 2% 

Total 6.59 100% 68455 100% 
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Fig. 9 Comparison of (a) detection accuracy (b) and FOM 
between‘symmlet2’ and ‘symmlet4’ basis for SWT. 
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