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Abstract— The correlation network of neurons emerges as
an important mathematical framework for a spectrum of
applications including neural modeling, brain disease predic-
tion and brain-machine interface. However, construction of
correlation network is computationally expensive, especially
when the number of neurons is large and this prohibits real-
time applications. This paper proposes a hardware architecture
using hierarchical systolic arrays to reconstruct the correlation
network. Through mapping an efficient algorithm for cross-
correlation onto a massively parallel structure, the hardware
can accomplish the network construction with extremely small
delay. The proposed structure is evaluated using Field Pro-
grammable Gate Array (FPGA). Results show that our method
is three orders of magnitudes faster than the software approach
using desktop computer. This new method enables real-time
network construction and leads to future novel devices of real-
time neuronal network monitoring and rehabilitation.

I. INTRODUCTION

The emergence of network science provides a power math-
ematical tool to study the structural and functional networks
of the brain. A range of novel models, both hierarchical
and scale-free networks, have been proposed based on the
inter-relationships between the brain regions, and also based
on the recording of neuronal activities. This opens a new
avenue to understand and interpret the complex brain, and
also enables novel real-time biomedical engineering solution
to brain diseases, such as epilepsy [1], Schizophrenia [2] and
Alzheimer’s disease [3].

Real-time constructing and tracking of the network of
activities provides a new dimension of inspection and mod-
eling. For example, epileptic propagation in brains can be
tracked effectively by monitoring the functional network evo-
lution. Real-time network analysis would enable a range of
novel devices for brain disease monitoring and rehabilitation.

Currently, brain network analysis is performed off-line.
This is mainly due to the complex computational requirement
for the recorded data. The very first step of network analysis
is to construct a relational network between all channels.
The computational effort grows quadratic with the number
of input channels. With the rapid advance of bio-sensing
technology, including multi-electrode arrays (MEA) [4] and
voltage-sensitive dye [5], the number of channel is increasing
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drastically. This exacerbates the computational effort for the
network construction.

This paper presents a systolic array structure [6] for real-
time correlation network construction. The cross-correlogram
based method is employed to reduce hardware cost and
provides effective correlation analysis for spike trains. A
unit-dimension systolic array is proposed for single-pair
spike trains, which is extended to a multi-dimensional sys-
tolic network for all pair-wise cross-correlation analysis.
The massively parallel architecture significantly reduces the
computational delay.

The paper is organized as follows. Section II introduces
the correlation network and cross-correlogram. Section III
illustrates the cross-correlogram based method for correlation
network reconstruction. Section IV presents the structure of
hierarchical systolic array. Section V discusses the evaluation
results on the scalability, hardware cost and latency.

II. BACKGROUND

A. Correlation network

A correlation network, also called functional network [7],
is method to express the correlation relationship among a
group of neurons. In the network, edges between nodes
represent the correlation between spike trains, which can be
either a weighted value or binary value (1 and 0 represent
correlated and non-correlated) [8]. Correlation networks has
shown specific deviations in the neural network organizations
in Schizophrenia [2], Alzheimer’s [3] and epilepsy patients
[1].

B. Cross-correlogram based correlation

The cross-correlogram is a classical method for finding
the correlation between two spike trains. Fig. 1 shows the
procedure of obtaining a cross-correlogram. Two spike trains,
called target and reference spike train, are aligned and
equally divided into a serial of bins in which ‘1’ represents
a spike. For each spike in the reference spike train, a
window centered at the reference spike is applied on the
target spike train. A sub-section of the target spike train is
picked. A histogram, namely cross-correlogram, is obtained
by accumulating all the sub-sections of the target spike train.
If two spike trains are correlated, a peak will be shown in
the cross-correlogram, as shown in Fig. 1(b). Otherwise, the
histogram is more or less random.

Mathematically, the cross-correlogram is the cross-
covariance between the two spike trains over a certain
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Fig. 1. (a) The procedure of cross-correlogram. (b) Cross-correlogram of spike trains with correlation (upper) and without correlation (lower). (c) An
example of correlation network (left), the cross-correlogram between channel m and n (right).

window and can be formulated by Eq. 1,

CCgram = x⃗T · y⃗
= [cgm(−w), cgm(−w + 1), · · · , cgm(w)]

cgm(τ) =

N∑
i=1

x(i)y(i+ τ) τ ∈ [−w,w]

(1)

where N × 1 vectors, x⃗, y⃗, are two spike trains, w is the
half window size, x⃗T · y⃗ represents the cross-correlogram of
two spike trains, cgm(τ) represents the cross-correlogram
with timing lag τ . Only multiplication and accumulation
operation are required. Furthermore, binary multiplication is
actually logic-and operation whose hardware implementation
is simple. As a result, in terms of hardware cost cross-
correlogram is much cheaper than the well known Pearson’s
correlation that involves division and square root operation
and has been used in [8] for constructing correlation network.

A threshold based method is proposed to quantitatively
determine whether two spike trains are correlated through
the results of cross-correlogram. The threshold is set to
k
∑w

i=−w cgm(i)

2w+1 , k is a constant empirical value. If the max
value of cross-correlogram is larger than the threshold, the
two channels are considered to be correlated.

A correlation network is always obtained by calculating
all pair-wise correlations of the spike trains and exemplified
by Fig. 1(c). Nodes and edges represent spike trains (neu-
rons) and correlated relationship. Denote M spike trains as
x⃗1, x⃗2, . . . , x⃗M , x⃗i is N×1 vector. The pair-wise correlation
between all electrodes can be formulated by Eq. 2,

CCmtrix = (x⃗1x⃗2 . . . x⃗M )T · (x⃗1x⃗2 . . . x⃗M )

=


x⃗T
1 · x⃗1 x⃗T

1 · x⃗2 . . . x⃗T
1 · x⃗M

x⃗T
2 · x⃗1 x⃗T

2 · x⃗2 . . . x⃗T
2 · x⃗M

...
...

. . .
...

x⃗T
M · x⃗1 x⃗T

M · x⃗2 . . . x⃗T
M · x⃗M


(2)

where CCmatrix is a matrix containing all pairs of cor-
relations. Each entry in the matrix is a cross-correlogram
between two spike trains.

C. Computational complexity analysis

The correlation between a signal and itself is not useful.
Correlation between x⃗i and x⃗j is the same as correlation

between x⃗j and x⃗i. As a result, for the matrix in Eq. 2, only
the components upper the diagonal or below the diagonal
part are useful. When there are M spike trains, M(M−1)

2
cross-correlation calculations are required. The number of
calculations of correlation is quadratic to the number of spike
trains. Constructing the correlation network presents a large
computational load under a large number of spike trains. A
long period of computing latency is unavoidable if using
traditional serial computing technique. In order to reduce
computing latency, we propose to use a hierarchical systolic
array structure to calculate correlation network. Our method
can turn the quadratic relationship to a linear one.

III. HARDWARE ARCHITECTURE

Systolic array is a specialized form of parallel computing.
Identical processing units are organized in a regular network.
Each processing unit only communicates with its neighbor
units. Pipelines are inserted in the communication channel,
which make data flow through the network rhythmically and
regularly.

A. Systolic array for cross-correlogram computation

The structure of the correlation hardware is shown in Fig.
2. Spike trains, x⃗ and y⃗, are fed into two delay chains. Delay
chains coordinate two spike trains and generate all the pairs
of signals with certain timing lags for correlation analysis.
One delayed spike signal, yi, is broadcasted to each logic-
and gate as one input. Another input of each logic-and gate
is delayed x⃗ with a certain timing lag to yi. Logic-and gates
are used here to perform binary multiplication. Hardware
adders accumulate the results of logic-and gate. Results of
adders are stored in registers, ‘R’, for accumulating. The
number of and-adder pairs equals to the window size, so
cross-correlograms with different timing lags are calculated
concurrently. The latency of cross-correlogram calculations
using this structure depends on the length of spike trains and
the window size. The latency is (l + 2w) × Tclock, where l
and w are the length of signal and the window size, Tclock

is the clock cycle.

B. Multi-dimensional systolic arrays

As the number of spike trains increases, the computing
delay will grow quadratically if using single correlation
hardware. In this paper, a two-dimensional systolic array that
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Fig. 2. Structure of one-dimensional array for single pair wise cross-correlogram (right) and two-dimensional array for calculating correlation network
(left). In the right sub-figure, ’R’ represents registers.

embeds much identical pair-wise cross-correlogram hardware
is used to speed up the computation.

The structure of the array that calculates the correlation
network of N spike trains is shown in Fig. 2. In the
figure, Mem[i], i ∈ [1, N ] stores the ith spike train. The
controller reads spike trains out of memories and pumps
them into the array. Delay units are inserted between two
neighboring processing elements (PEs) to form pipelined
structure that enables high throughput. Each processing ele-
ment (PE) implements the signal pair-wise cross-correlogram
corresponding to an upper diagonal entry in Eq. 2. For
example, the PE in row 1, column 2 corresponds to the entry
in row 1, column3 of Eq. 2 and computes the correlation
between the first and the third spike train. The number of
PEs is equivalent to the number of upper diagonal entries
in Eq. 2, so for N spike trains, N(N−1)

2 PEs are required.
The latency of the structure depends on the length of a spike
train, the number of spike trains and the window size. The
latency is

latency = [l + 2(n− 1) + w]× Tclock (3)

where l is the length of signal, n is the number of spike
trains, w is the window size and Tclock is the clock cycle. The
latency of the structure is linear to the number of channel.

C. Summary

The proposed hierarchical systolic array explores comput-
ing parallelism in the cross-correlogram calculation and cor-
relation network construction. The paralleled structure speeds
up the computing and makes the computing latency linear
to the number of spike trains. The processing elements in
the systolic array communicate regularly with their neighbor.
Because of the regular topology, the array can be easily
scaled up with the number of spike trains. However, the
number of PE is square to the number of spike trains. As a
result, the hardware cost will become large as the number of
electrodes increases.

IV. RESULTS

We apply cross-correlogram on the retinal data. The data
obtained from CARMEN project was used for studying
retinal bursts and waves [9]. The data are equally divided

correlation network (0s~5s) correlation network (5s~10s)

correlation network (10s~15s) correlation network (15s~20s)

Fig. 3. Correlation networks across one hundred trains during a bursting
event on the retina.

by bins (e.g. 40ms). The window size of cross-correlogram
is 20 bins. If the maximum value of cross-correlogram in
the window is three times larger than the average value, two
spike trains are considered to be correlated. Fig. 3 shows the
correlation network extract across 100 spike trains during a
bursting event on the retina.

With massive hardware arithmetic units, logic and memory
resources, modern FPGAs are well suit for implementing
complex neural signal processing algorithms and large scale
parallel structures. The reconfigurable ability makes FPGAs
more flexible than specific hardware. FPGAs have been
widely used in neural signal processing applications. In
this paper, Xlinix FPGA is used to evaluate the proposed
structure. The targeting device is Xilinx Virtex6 xc6vlx760.
The design tool is Xilinx ISE.

In order to study the scalability of the structure, proposed
arrays with different window size and channel number are
implemented on the FPGA. Fig. 4 (a) and (b) shows the
relationships between logic resources (in terms of the number
of LUTs, namely look-up table, which is the basic logic
resource of FPGA), storage resources (in terms of the number
of BRAMs, namely block memory) and the number of spike
trains. Controller and PE arrays are implemented by LUTs,
and BRAMs are for storing spike trains. As the number of
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TABLE I
COMPUTING DELAY COMPARISON BETWEEN PROPOSED ARRAY AND SOFTWARE1

Nch 4 8 12 16 20 24 28 32
Delayarray(µs) 20.16 20.32 20.48 20.64 20.8 20.96 21.12 21.28

Delaysoftware(µs) 8.6× 103 4.1× 103 1.02× 104 1.8× 104 2.8× 104 4.1× 104 5.5× 104 7.4× 104

Note: 1. Software is a Matlab program implemented on Intel Core I5 650 (@3.2 GHz). 2. Nch: the number of channel.
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Fig. 4. (a) Logic resource utilization of arrays (in terms of the number of LUT). (b) Memory resource utilization of arrays (in terms of the number of
BRAM). (c) Power consumption of arrays.

spike trains grows up, the logic resources increase quadrati-
cally. It is mainly because that PE arrays grows quadratically
as the number of signals increase. The consumed memory
resources are linear to the number of spike trains. The
window size also has impact on the logic resources. At a
certain number of channels, the LUT resources grow up
as the window size increasing. The window size does not
affect the memory resources. Fig. 4(c) shows the relationship
between the number of spike train and power consumption
of the array. The power consumption grows up as the number
of channels increases. The array consumes more power with
larger window size.

The computational delay of the array that is the time
spent on computing all correlations between electrodes is
determined by Eq. 3. In our experiment, spike trains contain
1000 bins and clock frequency is 50 MHz. The latency of
arrays with different number of channels is shown in Table
I. As the number of channels growing up, the computation
delay increase linearly. We compare our structure with the
high performance PC in terms of computational delay. The
delay of PC is obtained by measuring the running time of
a Matlab programme implementing the cross-correlogram
based correlation network calculation on Intel Core I5 650.
From Table I, we can see that the calculation delay of PC
increase quadratically. The gap between the performance of
the PC and the systolic array grows larger as the number of
channels increases. When the number of channel is 32, the
systolic array is almost 3500 times faster than PC.

V. CONCLUSION

In the paper, a novel hardware architecture utilizing
hierarchical systolic array is proposed for re-constructing
correlation network from multiple spike trains. The paral-
lelism in the network construction algorithm is exploited and
implemented using a hierarchical systolic array. Because of

the massively parallel architecture, the correlation network
construction is improved by three orders of magnitudes when
compared with software. This novel hardware architecture
design leads to future portable device for real-time brain
monitoring and neuro-rehabilitations.
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