
  

 

Abstract—Stroke is a cardiovascular accident within the brain 

resulting in motor and sensory impairment in most of the 

survivors.  A stroke can produce complete paralysis of the limb 

although sensory abilities are normally preserved. Functional 

electrical stimulation (FES), robotics and brain computer 

interfaces (BCIs) have been used to induce motor rehabilitation. 

In this work we measured the brain activity of healthy 

volunteers using electroencephalography (EEG) during FES, 

passive movements, active movements, motor imagery of the 

hand and resting to compare afferent and efferent brain signals 

produced during these motor related activities and to define 

possible features for an online FES-BCI. In the conditions in 

which the hand was moved we limited the movement range in 

order to control the afferent flow. Although we observed that 

there is a subject dependent frequency and spatial distribution of 

efferent and afferent signals, common patterns between 

conditions and subjects were present mainly in the low beta 

frequency range. When averaging all the subjects together the 

most significant frequency bin comparing each condition versus 

rest was exactly the same for all conditions but motor imagery. 

These results suggest that to implement an on-line FES-BCI, 

afferent brain signals resulting from FES have to be filtered and 

time-frequency-spatial features need to be used. 

I. INTRODUCTION 

HE cerebro-vascular accident (CVA) caused by stroke, 

brain injury, or cerebral paralysis is one of the main 

causes of long-term motor disability worldwide and in more 

than 85% of the cases functional deficits in motor control 

occur [1]. In particular stroke is the leading cause of disability 

in western countries and the costs of care rose by 30% over the 

last 20 years due to aging society. Furthermore, the 
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predictions are indicating a tremendous growth in elderly 

population. Additionally, in the EU the percentage of the 

population over 65 years old will increase from 17.1% in 2008 

to 30% in 2060. The percentage of persons over 80 years old 

will rise from 4.4% to 12.1% over the same period 

(EUROSTAT population projections). Incidence of a first 

stroke in Europe is about 1.1 million and prevalence about 6 

million. Currently, about 75% of people affected by a stroke 

survive one year or more and this proportion will increase in 

the coming years due to enhancing quality in hyper-acute, 

follow-up acute and subacute care, and life-long treatment of 

these conditions. From all the stroke survivors showing no 

active upper limb motion at hospital admission 14% showed 

complete recovery, 30% showed partial recovery and 56% 

showed no recovery [2].  

Physical therapy is the overall accepted method of 

rehabilitation for stroke patients. To promote the effects of 

physical therapy researchers and clinicians suggest various 

methods: intensive exercise and augmented feedback [3], 

constraint induced movement therapy [4], exercise in virtual 

environments with feedback to assist skills learning [5]; 

robotic assistive devices with sensory feedback for repetitive 

practice could provide therapy for long periods of time, in a 

consistent and measurable manner [6]–[8].  

The interventions made possible with the development of 

robotic technology are based on stimulation of haptic and 

proprioceptive receptors [9], [10] and allow repetitive training 

which is essential for learning of movement schema (training 

of the brain). A variety of robots for the upper and lower limb 

have been used as an addition to physical therapy for the 

training of different components of the central nervous system 

(spinal circuits and the brain).  

FES of muscles might enable movements not otherwise 

possible during the practice of tasks such as reaching to grasp 

an object [11]–[14]. Furthermore, studies have shown that 

FES can be used to reconstruct skills needed for movements in 

daily living activities, such as standing up, walking, and 

cycling [15]–[17]. 

Both, the FES and the robot based motor rehabilitation 

therapies have demonstrated positive results assessed by 

common motor impairment scales for stroke patients such as 

the Fugl Meyer scale [18].  

The hypothesis behind the augmented movement therapy 

by the FES and robots assumes that recovery happens partly 

due to the peripheral mechanisms, but mostly due to cortical 
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plasticity [19]. This hypothesis has been confirmed in motor 

training tasks with physiological tests involving transcranial 

magnetic stimulation (TMS) [20]–[24] and imaging based on 

functional resonance imaging (fMRI) [25]. 

It is well known that plasticity effects and thereby possible 

functional recovery depend on coherence between afferent 

and efferent neural activity [26]. The role of the intentional 

efforts or efferent activity for the recovery has been 

demonstrated for example with the motor imagery alone or 

combined with computer feedback when used as a 

rehabilitation therapy [27], [28].  

The FES, as well as the robot movements, activates sensory 

channels that provide maximal afferent inflow to the brain. If 

this inflow is coherent with the motor activity outflow we 

would be able to close the motor control loop. Recently some 

groups explored the potential of Brain Computer Interfaces 

(BCIs) in promoting functional recovery following the 

previously described principle [29], [30].  

In all brain computer interface systems the main problem is 

to extract the signals of interest in presence of massive 

biological and externally induced artifacts. In the case of 

integration of two technologies (BCI and FES or Robotics) 

brain signals are contaminated with electrical noise and with 

neural correlates of muscle contractions (FES) and 

movements (FES and robot), but also other voluntary motor 

activity. The artificial neural contamination comes from the 

afferent activities due to the muscle contraction and/or limb 

movement which activate regions habitually used as a source 

of information for the BCI. This could therefore be 

understood as a physiological artifact in the integrated system 

that could either bias or reinforce an online SMR based BCI. 

In this paper we analyze the different issues concerning the 

online afferent brain activity influencing motor areas in order 

to design an on-line FES-BCI. 

 

 

II. METHODS 

A. Experimental Design 

Five right handed healthy volunteers were involved in the 

study. The subjects were seated in a comfortable chair facing a 

computer screen located 1m apart from the chair. The 

experiment was divided in two separate blocks: the hand fixed 

block (A) having the subjects hand fixed to a robotic hand 

orthosis and the hand free block (B) in which the hand of the 

subject was not attached to the orthosis (See Table I). In both  
 

TABLE I. Experimental Design  

There are two separate blocks: four conditions for Hand Fixed Block (A) and 

three conditions for Hand Free Block (B). Hand openings were targeted in all 

the conditions other than the condition, „Rest‟ and „sFES‟ (sFES: FES below 

motor threshold) 

blocks, the hand starting position and range of motion were 

controlled to be the same. In the hand fixed block the position 

of the right hand was controlled defining the maximum and 

minimum finger extension of the robotic orthosis, while in the 

hand free block a mechanical structure restricted the 

movements (See fig. 2).  

The hand fixed block consisted of 4 different tasks to the 

right hand: A1) kinaesthetic motor imagery of opening the 

hand, A2) FES using a below motor threshold stimulation 

intensity, A3) passive extension of the fingers and A4) rest. 

During A2 no movement was produced due to the FES. The 

hand free block consisted on 3 different tasks to the right 

hand: B1) voluntary movements, B2) FES-driven hand 

opening and B3) rest. In task B1, the subject was asked to 

open the hand and maintain it opened until the end cue 

appears. In task B2 the hand was passively opened using FES 

while the subject was asked to relax.  

 

 
 

Fig. 1. Time course of a single trial. Subjects were visually informed of the 

upcoming condition for 2 seconds following 2 second readiness period and 

then the trial period occurred for 3 seconds. aMotor imagery (A1) and 

voluntary movement (B1) start with auditory cue, “Go”, but the other 

conditions have no cue signal. bTrials for all the conditions stop with “End” 

signal. 

 

In both blocks the subjects were presented with 2 seconds 

long visual cues on the screen indicating the upcoming task 

(time 0 s). In Tasks A1 and B1, two seconds after the visual 

cue disappeared (time +4 s), an auditory GO cue indicated the 

beginning of the task (see fig. 1). In the remaining tasks no 

auditory cue was presented since all of them involved passive 

actions and were either initiated automatically by the orthosis 

or the FES, or consisted of resting. All the tasks lasted 3 

seconds until an auditory and visual END cue was presented 

(time +7 s). The inter-trial interval was constant and lasted for 

3 seconds. The cues indicating the tasks were presented to the 

subject in random order to minimize anticipatory attention. 

Each task was repeated 50 times during the experiment (n=50). 

The experimental protocol was approved by the ethics 

committee of the University of Tübingen, Medical Faculty. 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. A mechanical structure restricted the range of finger movements for 

the hand fixed block. The extension of each finger was controlled by this. 

A. Hand Fixed Block B. Hand Free Block 

                1                    2              3             4           1             2            3 

    Motor Imagery       sFES       Passive      Rest    Voluntary     FES       Rest 
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 FES 

Before starting the experiment FES parameters were 

adjusted for each individual. Two FES unipolar electrodes 

were placed on the extensor digitorum communis (EDC) for 

finger extension following physical landmarks. We fixed the 

stimulation frequency to 20 Hz and the pulse width to 300 μs 

varying the intensity to detect the motor threshold. We used a 

stimulator from UNAFET, Belgrade, Serbia to provide the 

FES. We defined two levels of stimulation: S1) the subject 

feels the stimulation but no movement is evoked and S2) 

crossing the motor threshold using the minimum intensity 

producing finger extension. The subjects were instructed not 

to move their fingers against or together with the FES-driven 

movements. 

 Orthosis 

Each finger can be moved individually using a DC−Motor 

M-28 from Kaehlig Antriebstechnik GmbH, Hannover, 

Germany with worm gear head from the same company for 

each finger. Each motor drives via cogwheel and cograil a 

bowden cable. A finger holder is mounted on the other side of 

each bowden cable. Near this finger holder an optical position 

sensor is mounted to detect the finger position independent of 

the bowden cable tolerance and elasticity. The power 

electronics is made as a linear regulation to prevent artifacts 

from switching devices influencing the EEG.  

B. Signal Acquisition 

EEG data were acquired using 2 BrainAmp amplifiers of 32 

channels each from Brainproducts GmbH, Munich Germany. 

An ActiCap 64-channel EEG cap (modified 10-20 system) 

from the same company was used for EEG data acquisition, 

referenced to the nasion, and grounded anteriorly to Fz. EMG 

data was acquired using 8 bipolar Ag/AgCl electrodes from 

Myotronics-Noromed (Tukwila, WA, USA) and placed on 

antagonistic muscle pairs; one close to the external epicondyle 

on the extensor digitorum (forearm extension), other on the 

flexor carpi radialis (forearm flexion) other on the external 

head of the biceps (upper arm flexion) and the last one placed 

on the external head of the triceps (extension upper arm). The 

EMG electrode impedance was always kept under 20 kohm. 

 

C. Signal Processing 

Data of five healthy volunteers were acquired excluding the 

entire data set of one participant due to excessive movement 

related artifacts. To observe the influence of the different 

afferent stimulation in Online BCI control, an R-square 

statistical analysis was performed. The “Rest” condition was  

used as reference for the analysis comparing it to the other 

classes (FES, passive movement, motor imagery, active 

movement and below motor threshold FES). The analysis was  

done using the Offline-Analysis tool from the BCI2000 

platform [www.bci2000.org] obtaining a value for each 

channel and frequency bin (2Hz) combination from 0 to 60 Hz 

(See Fig. 4). 

 

In each R2 plot, the most significant difference between 

conditions was determined by the frequency bin and EEG 

channels combination with the highest R-square values. Since 

some influences of the electrical noise were observed during 

FES conditions as seen in fig. 4(e), the stimulation frequency 

and its harmonics were excluded from our analysis in FES 

conditions. Since in motor imagery based BCI systems the 

sensory motor rhythms are commonly used we decided to 

focus our analysis on frequencies between 6 and 35 Hz. No 

further artifact rejection was used in order to simulate online 

conditions. 

 ●   Common Spatial Patterns 

CSP is a technique to analyze multichannel data based on 

recordings from two classes (tasks). It yields a data-driven 

supervised decomposition of the signal x(t) parameterized by 

a matrix W that projects the signal from the original sensor 

space to a surrogate sensor space [32].  
 

                                 xcsp(t)  =  x(t)W                                  (1)  

 

Each column vector of W is a spatial filter. CSP filters 

maximize the variance of the spatially filtered signal under 

one task while minimizing it for the other task. Since the 

variance of a band-pass filtered signal is equal to band-power, 

CSP analysis is applied to band-pass filtered signals to obtain 

an effective discrimination of mental states that are 

characterized by ERD/ERS (event related 

desynchronization/synchronization) effects. In this study the 

bands and time intervals were individually optimized for each 

user. The patterns were computed between class Rest vs 

Motor Imagery, Rest vs sFES and Motor Imagery vs FES and 

they serve to show that it would be possible to find meaningful 

patterns between these combinations to perform on-line 

experiments. 
 

 

 

 

III. RESULTS 

As we can see in fig.3, the identified as most relevant 

frequency per condition changes from subject to subject in 

accordance to previous literature [33]. For subjects 1 and 2 the 

most significant frequencies comparing motor imagery and 

passive movement versus rest was the same. Subject 1 shared 

 

Fig. 3. Frequency bins with the highest R-square values for individual 

subject and for the grand average among subjects comparing Rest versus the 

5 different conditions: Passive (P,       ), below motor threshold FES (S,       ), 

motor imagery (M,       ), Active (A,       ), and FES (F,       ).  
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Fig 4. R-square plots of  the grand average for the five conditions: (a) Rest vs Passive, (b) Rest vs sFES, (c) Rest vs MI, (d) Rest vs Active,  

and (e) Rest vs FES. All the conditions had the highest R-square value in the 13-16 Hz bin except one condition, MI. The Rest vs MI had  

the highest R-square value in the 19-22 Hz. 

 

Fig 5. Topography of R-square values for tasks sharing relevant frequencies at 

three different frequencies (8, 12, and 16 Hz) in columns for all five conditions.  

 

Fig 6. Patterns obtained for the three conditions: Rest vs. MI (8-18Hz),  

Rest vs. sFES (8-14 Hz), and MI vs. sFES (8-18 Hz).  
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the same frequency bin with highest R-square values when 

comparing rest versus Passive and MI. For the contrary 

Subject 2 presented similar frequencies for the highest 

R-square values comparing sFES and Active movement 

versus rest. Subject 3 showed very similar patterns in all 

conditions and Subject 4 presented the same frequency bin for 

passive and FES with the highest R-square values.  

For the grand average among the subjects, all the conditions 

besides motor imagery showed the exact same frequency bin 

to be the most significant one when compared to rest. 

However, the spatial patterns of the R-square values vary in 

terms of frequency and electrode locations and among 

subjects. When observing the grand average data similar 

patterns were elicited during active and FES in mu and beta 

bands in terms of spatial distributions presenting high 

R-square values on top of the motor areas on both 

hemispheres (see fig. 5). However higher R-square values 

were found on the ipsilateral hemisphere in both conditions. 

During the FES without producing muscle contraction and 

therefore movement (sFES), the highest R-square values were 

found on the contralateral hemisphere motor regions. During 

sFES the R-square values were significantly lower compared 

to the obtained for FES and active movement implying skin 

mechanoreceptors afferent flow. Afferent brain activity 

influences more sensorymotor rhythm if a movement is 

involved although the simple skin sensation elicits as well 

some desynchronization as previously described in the 

literature [34]. 

 

We computed CSP analysis between different conditions to 

find out whether meaningful filters can be extracted.  Fig. 6 

depicts the patterns obtained for the conditions Rest vs. MI 

(frequency band 8-18 Hz), Rest vs. sFES (8-14 Hz) and MI vs. 

sFES (8-18 Hz). We can observe that all patterns extracted 

confirm the results previously described. The sFES presents 

more ipsilateral ERD than the condition MI, which is nicely 

represented by the weights around C4. This is however, not 

observable for the MI case. Additionally, it is possible to find 

patterns that distinguish between MI and sFES, one focused 

on the contralateral side and the other in the ipsilateral, to 

account for the strong ERD of sFES in both hemispheres. 

 

IV. CONCLUSION 

Despite the differences between subjects and conditions 

these data show that there is a clear overlap in terms of the 

most significant differences between conditions and rest. A 

classifier for a motor related BCI would use the most 

significant difference between a condition and rest in order to  

decode an intention to move (motor imagery in this paper), 

therefore it is necessary to control for the feedback influence 

(provoked movement by FES or orthosis) on the brain activity 

if this can alter the feature used for the classifier. In this paper 

we demonstrate that in the case of a BCI providing online 

haptic feedback of any kind it is necessary to differentiate 

efferent and afferent brain activity. As well as frequency, 

spatial distributions are similar between conditions and a 

further comparison between efferent and afferent spatial and 

frequency patterns is necessary to avoid haptic feedback 

related bias in the BCI system. While we illustrated with one 

example that in principle it is possible to extract subject 

optimized patterns to distinguish between conditions, we need 

to still test whether both conditions can be correctly classified 

when they occur simultaneously. In that case the spatial 

distribution of a single frequency bin might not be enough to 

differentiate efferent and afferent motor related brain activity. 

Further analysis with more subjects needs to be done. 

Including time as an extra feature or parallel multi-frequency 

CSPs might serve as a proper solution for the afferent efferent 

differentiation.  
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