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Abstract— We propose a novel approach for compressive
sampling of the neonatal electro-encefalogram (EEG) data. The
method assumes that the set of EEG data is generated by
linearly mixing a fewer number of source signals. Another
assumption is that the sources are nearly-sparse in Gabor
dictionary. The presented method, instead of compressing
original EEG channels, first performs a data-reduction, and
then compresses the obtained sources. With this approach we
showed that the gain in reconstruction speed is 33%-50%,
whereas the compression rate is enhanced by 33%.

I. INTRODUCTION

At the neonatal intensive care units, continuous electroen-
cephalographic (EEG) recordings are regularly performed
for the assessment of hypoxic brain injuries of newborns.
Nowadays, there is a tendency for the development of
wireless EEG devices, that would decrease the amount of
movement artifacts and provide a comfortable surrounding
for the babies. One of the major issues is the large quantity
of data that has to be transmitted over the wireless link. It is
common that approximately 20 EEG channels are sampled
at a sampling frequency (fs) of 256Hz, thus producing
around 5000 samples per second. This significantly affects
the battery life, as the recordings should be continuous for
a period of 48 up to 72 hours. Therefore, there is a growing
interest for the data compression methods that can efficiently
compress the EEG data into a few number of samples.
This would allow for the fast wireless transmission of the
collected EEG data in a clinical setting.

Compressive sensing (CS) provides a new emerging
framework for signal compression, which has acquired a
lot of attention in recent years within the signal processing
society [1], [2], [3], [4]. This theory shows that each signal,
which has a sparse representation in a basis (or a certain
dictionary), can be recovered from a small number of mea-
surements from the original basis, which is comparable with
the so called ”sparsity” of the signal. In this formulation,
sparsity denotes the number of atoms (information), that is
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needed to represent the signal in the basis in which it is
sparse.

The CS framework for compressing the adult EEG signals
has already been proposed, and its near-sparsity in a Gabor
dictionary has already been shown [5]. In that work, it was
also shown that for adult EEG joint sparsity (proposed in [6])
can be used, although with a slightly worse reconstruction
performance than a regular (channel-by-channel) compres-
sion. This is due to the fact that joint sparsity assumes all the
channels to be composed of the same atoms, only different
weighting coefficients are allowed. The ”channels” in [5]
were not different EEG channels, but the compression was
performed for different trials of the same task on the same
channel. However, in this work the compression of the whole
EEG signal (18 channels) is performed. Additionally, the
EEG recordings of neonates have less common information
since the brain connectivity functions have not yet been fully
developed. Therefore, joint sparsity is not applicable, i.e. it
would give large errors during the reconstruction stage.

A new approach for compressing the multichannel data is
reported for compression of Hyper Spectral Images (HSI)
[7]. In that work, instead of compressing all the images
(channels), the compression and reconstruction of the source
signals is proposed. It is assumed that the signals are
dependent across the channels, and that only few number of
sources are generating multichannel observation based on a
linear mixture model. The mixing matrix is then used during
the reconstruction stage for recovering the original images.
It was shown that sources are more sparse than the original
image, and a big improvement in the compression rate is
obtained.

Following the same logic, the EEG signal on scalp can
also be represented like a mixture of the underlying sources,
located deep inside the brain. However, in EEG recordings,
the mixture matrix of possible sources in the brain is unfor-
tunately not a priori known. In this paper, we propose the
following compression algorithm for the EEG data:

• First apply a data reduction algorithm (Principle Com-
ponent Analysis (PCA) or Singular Value Decomposi-
tion (SVD)). In this way we obtain a reduced matrix of
sources which retains most of the data variance with a
lower number of channels.

• After PCA or SVD, one of the Independent Component
Analysis (ICA) algorithms may be optionally used to
make the sources more structured, and therefore more
easily compressible.
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• Eventually, the sources are compressed, and together
with the mixing matrix, they are sent over the link,
and reconstructed on the receiver’s site using one of
the available CS reconstruction algorithms.

In this paper we show the performance of the algorithm
formed as explained before. The ICA algorithm used in this
work was Second-Order Blind Identification (SOBI), due
to its computational efficiency. Iterative Hard Thresholding
(IHT) algorithm [8] was used in the reconstruction stage.
The results are compared with the performance of a regular
(channel-by-channel) compression, and the conclusions are
drawn and discussed in the later sections.

II. METHODS

A. Compressive Sensing

In the CS theory, a signal x of length N is called K-
sparse in dictionary Ψ if it can be represented by K atoms
(elements) from that dictionary, i.e. x =

∑K
i=1 aiψi, where

ai are the coefficients associated with the atom ψi, and
K << N . The CS theory further states that it is possible
to construct a MxN matrix Φ (called measurement matrix),
where M is of the order of K (M << N ), which will allow
for the reconstruction of the signal x from the measurements
y = Φx. This is possible only if the measurement matrix
satisfies the so called Restricted Isometry Property (RIP)
[9]. In short, if an M × N matrix Φ satisfies the K-RIP,
it ensures that all the submatrices of Φ of size M ×K are
close to an isometry, and therefore distance (and information)
preserving. While checking whether a measurement matrix
Φ satisfies RIP is an NP-Complete problem in general
[10], random matrices, whose entries are independent and
identically distributed (i.i.d.) Gaussian, Rademacher (±1) or
more generally subgaussian, showed to work with high prob-
ability [11]. Moreover, these matrices also have the so-called
universality property, that is for any choice of orthonormal
basis Ψ, ΦΨ also satisfies RIP with high probability [12],
and therefore matrix Φ is a good choice for a measurement
matrix.

argmina||a||1, such that y = ΦΨa (1)

The CS reconstruction problem can be formulated as follows:
Find coefficients a, s.t. y = ΦΨa, where y, Φ and Ψ
are known. This problem can be reformulated as a linear
programing (LP) problem (like in equation 1), and can be
solved by l1 convex minimization. It has been shown in
[13] that the necessary number of measurements is M >
2Klog(N/M)(1 + o(1)). However, due to large calculation
costs of LP, we chose one of the greedy approaches, thereby
minimizing the l0 instead of l1 norm. Available algorithms of
this sort are Orthogonal Matching Pursuit (OMP), Iterative
Hard Thresholding (IHT), COmpressed SAmpling Matching
Pursuit (CoSaMP)... In this work IHT algorithm is used
due to its simplicity and speed (IHT is shown to perform
faster than the other available algorithms [14], [8]). Although
greedy algorithms are generally proven to yield the exact
solution if it exists with fewer computations at the expense

of slightly more measurements, it has been shown that IHT
possess some very interesting properties, among which near-
optimal error guaranties, robustness to observation noise, low
computational complexity and uniform performance guaran-
tees (depend only on properties of the sampling operator and
signal sparsity)[8].

B. Dictionary

It has been previously shown that the EEG data are sparse
in an over-complete Gabor dictionary [5]. Therefore, the
dictionary used in this work was Gabor dictionary, and it
has been created with an atom length of 1024 samples (4
seconds of the EEG signal), which yielded 40.960 atoms
in total. This dictionary covered the frequency band up to
128Hz (fs = 256Hz).

C. Data

In this study, we used 50 blocks of 18 channels, 4 seconds
long EEG data recorded on hypoxic neonates. The sampling
frequency was 256Hz. The data were high-pass filtered at
1Hz to remove the DC component, and a notch filter at
50Hz for removing the power-line interference was applied.
No low-pass filtering has been performed. The data were
compressed in two different ways. First, the data were
compressed on a channel-by-channel basis for 4 different
numbers of measurement M , namely 100, 133, 150 and 200
per channel.

The second approach was to first perform the data reduc-
tion step, solving the ICA problem X = AS. In this equation
A is the mixing matrix, and S are the computed sources.
Then the data are sampled with the sensing matrix, and the
measurements y are acquired y = ΦS, such that the total
number of measurements was the same for both approaches.
In our approach when ICA was used for preprocessing, also
mixing matrix A, has to be included in the total number
of measurements. The number of derived components in the
reduction stage was 9 for M = 100 and M = 150 and 12 for
M = 133 and M = 200 (see Table I for details). The sources
are reconstructed with the IHT algorithm, and the estimated
sources coefficients a are first derived by solving y = ΦΨa,
and then the estimated sources ŝ are computed ŝ = Ψa.
Finally, the estimated recovered signals are calculated by
X̂ = AŜ. The performances of the reconstructed signals
x̂ for two approaches were assessed based on the speed of
recovery and the normalized root mean square error (NMSE)
of the reconstructed signals.

III. RESULTS

It is apparent that in our setup, one first has to perform the
ICA algorithm (the data reduction stage) before compression.
Therefore, we need to check how much time is required to
perform the ICA and to compress the data. In our experi-
ments, for 1024 samples (4 seconds)18-channel EEG data,
the compression time (including the data reduction step) was
always less than 0.5 seconds on the personal computer with
Intell Core2Duo processor, and 4Gb of RAM. Therefore, we
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TABLE I
THE NUMBER OF MEASUREMENTS WITH REGULAR COMPRESSION AND

WITH OUR ICA APPROACH. THE TOTAL NUMBER OF MEASUREMENT IS

FOR BOTH APPROACHES THE SAME

Total Number of Number of ICs Number of Measurements
Measurements (M ) for IC

18× 100 9 182 + 18
18× 133 12 182 + 18
18× 150 9 282 + 18
18× 200 12 282 + 18
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Fig. 1. The NMSE for 50 different 4-second blocks of EEG data. The
dashed lines belong to regular compression, whereas the solid lines belong to
compression with ICA data reduction step. Different colors denote different
settings in terms of M

conclude that speed sets no limits for performing ICA in the
compression stage.

Additionally, it is important to know the amount of in-
formation lost due to data reduction. In our experiments,
the preserved variance was around 90% if the reduction was
performed with 9 independent components, and around 95%
when 12 components were used.

After we know that ICA can be performed, the benefit of
using this kind of preprocessing in the compression stage
was checked. Fig. 1 shows the NMSE of the reconstructed
data for regular compression (dashed line) and compression
when ICA was included (solid line). In this figure, M is
the number of measurements per channel. It is apparent that
not only reconstruction with ICA always gave better results
than a regular compression, but also that even with less
measurements (M = 100 instead of M = 133 or M = 150),
better reconstruction was achieved. Additionally, the ICA
preprocessed data for M = 150 were better reconstructed
than regularly (channel-by-channel) compressed data with
M = 200.

Fig. 2 shows the boxplot of differences in the reconstruc-
tion errors between regular compression, and compression
with ICA preprocessing for different values of M . It is
apparent that only in a few cases regular compression yielded
better results, and therefore our approach clearly outperforms
the regular one.

In Fig. 3 we show the part of the EEG signal where our
algorithm performed the worst for M = 200 measurement
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Fig. 2. Boxplot of NMSE differences between regular compression and
compression with the ICA reduction step. It is obvious that the difference is
always positive, showing that regular compression always has higher NMSE
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Fig. 3. The worst reconstructed 4 seconds block using our approach with
ICA data-reduction step for M = 200. Black is the original signal, and the
reconstructed signal is shown in red

per channel. This part of the EEG data gave also the worst
results with the regular compression. It is obvious that the
structured part of the data is nicely modeled, whereas our
algorithm failed to fully recover some of the high-frequency
artifacts. However, the overall reconstruction is still of high
quality.

Finally, we tested what is the speed benefit of our al-
gorithm in the reconstruction stage. We found that on our
data-set, average reconstruction per channel (both for original
channels and independent sources) was around 100 seconds.
However, since the number of sources is lower than the
number of channels (in our setting 50% for M = 100
and M = 150, and 25% for M = 133 and M = 200),
we conclude that the speed benefit is 33% to 50% for this
experiment.

IV. DISCUSSION

In this paper we propose a compressive sampling approach
that uses the data reduction step in the preprocessing stage.
We used SOBI ICA, although other data reduction meth-
ods are also possible. After the data reduction has been
performed, obtained sources are compressed, instead of the
original signal. In this way, the amount of data that has to be
transmitted is reduced. The sources are then reconstructed,
and multiplied with the mixing matrix in order to obtain the
reconstructed signals.

We showed that the data reduction is fast enough (less
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than 0.5 second for the 4 seconds data) and that therefore
can be incorporated in the compression stage. Concerning
the accuracy of data reconstruction, we showed (Figs. 1,2)
that the accuracy is almost always higher with the data when
ICA has been used, if the same number of measurement has
been transmitted. Moreover, it is apparent from Fig. 1, that
even when M = 100 measurements has been transmitted
with ICA preprocessed compression, the accuracy of the
reconstruction is at least comparable with the case when
M = 150 measurements has been sent with the regular
approach. Thus, besides the better reconstruction with the
same number of transmitted data, one may also obtain better
reconstruction with even 33% less measurements.

The speed of the reconstruction depends also on the
number of channels to be recovered. In our approach, instead
of compressing, and afterwards reconstructing all of the 18
channels one-by-one, we send only the estimated indepen-
dent sources. In this experiment, the number of sources
was 9 or 12, meaning that only 9 to 12 signals have to
be reconstructed. Since the speed of channels or sources
reconstruction is approximately the same, we have 33% to
50% gain in reconstruction speed.

Fig. 3 shows the worst reconstruction of our data among
the 50 blocks that were compressed and reconstructed. It
can be seen that the structured EEG parts were correctly re-
covered, whereas sometimes the algorithm failed to properly
model the noise (muscle artifact), present in the channels 15
and 16. However, even the reconstruction of the noise from
channels 1 and 2 is fairly nice.

For the reconstruction stage, the iterative hard thresholding
(IHT) algorithm was used, due to it’s simplicity, accuracy
and speed [8]. However, some other, faster algorithms, like
Accelerated IHT (AIHT) [15] may be used as well. In our
work, only the difference in reconstruction speed between
our algorithm and regular compression was important, not
the absolute speed itself.

The compression of adult EEG signals has already been
demonstrated previously [5]. It has been shown there that
joint sparsity can be used for compression in order to
accelerate the reconstruction process at the slight cost of the
reconstruction accuracy. However, the data used in that study
are trials of the same task of one adult EEG channel data,
with maximum frequency of only 50Hz. In that case, the
assumption of joint sparsity that all the channel consist of the
same atoms, with different coefficients [6] sounds reasonable,
and it can be expected that all the reconstruction may be
fairly good.

The data used in this setup are multichannel neonatal EEG
data. Brain connectivity in neonates is not yet developed,
and therefore the information embedded in different channels
may be highly different. Therefore, it cannot be expected
that the joint sparsity assumption holds. However, with
implementing ICA and compressing the independent sources
instead of the original channels, we have gained both in
reconstruction accuracy, and speed (see Fig. 1). It is also
apparent that the difference in reconstruction accuracy drops
with increasing the number of measurements (Fig. 2), what

was expected. Also, the quality of reconstruction itself in this
case increases.

Taking this into account, one can also expect that the
compression of the adult EEG data can be recovered with
even greater compression rate, and with higher accuracy,
since this data is highly redundant. The huge number of
adult EEG channels (typically 64 to 128) can be significantly
reduced using one of the data reduction techniques without
substantial loss of relevant information. The focus of this
paper, however, were only the neonatal EEG recordings.

Another possible improvement of the algorithm would be
to explore the properties of the mixing matrix A, and to
check if this matrix can be adaptively updated, or optimized
to a constant (like it is the case in [7]) instead of performing
ICA for each block of data separately. This is a first step with
promising results towards obtaining higher compression ratio
for the neonatal and adult EEG signals, since they are not
fully sparse in any orthonormal basis.

V. CONCLUSIONS

In this paper we proposed a new method for compressive
sampling of the neonatal EEG data. We showed that our
new method clearly outperforms the regular compression
algorithms, with the speed gain in the reconstruction stage
enhanced by 33% to 50%. We believe that the same method
can also be successfully applied to adult EEG data.
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