
 

 

  
Abstract—The ability to detect and classify individual and 

combined finger movements from neural data is rapidly 
advancing. The work that has been done has demonstrated the 
feasibility of decoding finger movements from acutely recorded 
neurons. There is a need for a recording model that meets the 
chronic requirements of a neuroprosthetic application and to 
address this need we have developed an algorithm that can 
detect and classify individual and combined finger movements 
using neuronal data acquired from a chronically implanted 
Utah Electrode Array (UEA). The algorithm utilized the firing 
rates of individual neurons and performed with an average 
sensitivity and an average specificity that were both greater 
than 92% across all movement types. These results lend further 
support that a chronically implanted UEA is suitable for 
acquiring and decoding neuronal data and also demonstrate a 
decoding method that can detect and classify finger movements 
without any a priori knowledge of the data, task, or behavior. 
 

Index Terms—Arrays, decoding, microelectrodes, neural 
engineering, neural prosthesis 
 

I. INTRODUCTION 
EURONAL populations have proven effective in 
decoding both sensory input and motor output because 

multiple neurons fire in response to a single variable [1, 2]. 
Consequently, the ability to decode neuronal population 
signals in real time is leading to neuroprosthetics that are 
directly controlled by these signals [3-5]. Extensive progress 
has been made in decoding reach and simple grasp 
movements of non-human primates (NHPs). However, only 
a few studies have decoded individual finger movements [6-
9]. This work has demonstrated the feasibility of decoding 
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finger movements using acutely recorded individual 
neurons. As the work done utilized neurons recorded 
individually and sequentially, the need still exists for a 
model that relies on a chronically implanted microelectrode 
array. 
 To address this need, we set out to create an algorithm 
that could reliably perform on data obtained during 
individual and combined finger movements using a 
chronically implanted Utah Electrode Array (UEA). The 
algorithm requires no a priori knowledge of the data, task or 
behavior.  Continuous data sets that included a no-movement 
state and up to eight movement types were decoded using 
the algorithm. The average sensitivity and specificity results 
were >92% across all movement types. This ability to 
decode finger movements using continuously recorded 
action potentials from a chronically implanted 
microelectrode array demonstrates a viable method for 
neuroprosthetic hand applications. 

 

II. METHODS 

A. Approvals 
Approval for the animal use protocol in this study was 

obtained from the local Institutional Animal Care and Use 
Committee (IACUC). All procedures conformed to National 
Institutes of Health (NIH) standards for animal care. 

B. Experimental Apparatus 
A male macaque monkey was trained to perform flexions, 

extensions, and combined flexions of the thumb, index 
finger, and middle finger when cued. Extensions and 
flexions were recorded using a manipulandum that had 
separate microswitches for flexion and extension for the 
thumb, index finger, and middle finger.  

 Neural data was recorded from an implanted Utah 
Electrode Array (UEA) that had 96 functional electrodes 
located at the tips of 1 mm shanks. The neural data, 
microswitch closures, markers, and task parameters were 
recorded using a Cerebus data acquisition system (Blackrock 
Microsystems, Salt Lake City, UT). Thirteen sessions were 
recorded over the course of 35 days that ranged from 13 
days to 48 days post-implantation. 
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TABLE I 
DETERMINING THE OUTCOME OF EACH WINDOW 

 
  

 Movement 
Microswitch 

closure occurred 
within the window. 

No Movement 
Microswitch closure 
did not occur within 

the window. 
Detection 

Instantaneous firing rate 
rose above threshold 
within the window 

True Positive  
(TP) 

False Positive  
(FP) 

No Detection 
Instantaneous firing rate 

did not rise above 
threshold within the 

window 

False Negative 
(FN) 

True Negative  
(TN) 

 

C. UEA Implantation 
A UEA was implanted in the hand region of the primary 

motor cortex (M1) contralateral to the monkey’s trained 
hand (Fig. 1). The M1 region was located using anatomical 
landmarks and stereotaxic coordinates. 

D. Spike Sorting 
A threshold of -70 microvolts was applied to the neural 

recordings in order to identify action potentials from isolated 
neurons. This data was then sorted using a principle 
components analysis algorithm. These sorted spikes were 
then visually evaluated to correct for any obvious algorithm 
deficiencies or over-sorting issues. 

E. Analysis 
The instantaneous firing rate was calculated by taking the 

reciprocal of the inter-spike interval. A low-pass filter was 
applied that eliminated any instantaneous firing rates that 
exceeded 100 Hz in order to correct for erroneous sorting. 
The instantaneous firing rates were then smoothed using a 
moving window with a window size of 200 ms and a step 
size of 40 ms. All analyses and computations were done 
using custom MATLAB scripts. 

F. Training and Decoding 
Training—Find tuned neurons and their optimal thresholds 

The decoder was trained using a portion of the total trials 
for each movement type from a given session. The monkey 
did not perform every possible movement type each session; 
therefore, a minimum of 15 trials for a given movement type 
had to occur in a given session for the decoder to be trained 
on that movement type. If the minimum number of total 
trials was met, forty-five percent of the total trials were used 
for training. An maximum of 35 trials were used for training 
to maximize the number of trials decoded by the algorithm. 
Some sessions included periods of inactivity that were more 
than 20 seconds in duration; in these cases, forty percent of 
the inactive period(s) was(were) included in the training. 

A receiver operating characteristic (ROC) curve was 
generated to determine which neurons demonstrated a 
change in firing rate just prior to movement. An ROC curve 
was generated by stepping through trial firing rate thresholds 

for each movement type with every neuron. To generate a 
single point on an ROC curve, a trial threshold within a 
range from 0 to 100 Hz was set for that neuron’s 
instantaneous firing rate. The instantaneous firing rate of the 
neuron was then stepped through using a time window of 
400 ms and a step-size of 40 ms for the duration of the 
training portion of the session. If, within the window, the 
smoothed instantaneous firing rate surpassed the set 
threshold, the result of that window was detection. 
Simultaneously, if a microswitch closure for the movement 
type of interest occurred within the window, then the result 
was movement. Based on the detection and movement 
results for each window, true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN) were 
determined (Table I). From the true positives, false positives, 
true negatives, and false negatives the true positive rate 
(TPR) was calculated using equation (1) and the false 
positive rate (FPR) was calculated using equation (2). 
Statistically, the TPR is equivalent to sensitivity and the FPR 
is 1 – specificity. The TPR and FPR were calculated for each 
trial threshold as the process was repeated through the range 
of trial thresholds. An ROC curve for the specified 
movement type and neuron was then generated point by 
point by plotting the TPR against the FPR for each trial 
threshold.  

After an ROC curve was generated for each movement 
type with every neuron, the area under the curve (AUC) was 
used to rank the neurons. The neurons were ranked by 
movement type in descending order with the largest AUC 
indicating the most tuned neuron for that movement type.  

The optimal threshold for each neuron for a given 
movement type was found by subtracting the FPRs from the 
TPRs. The threshold associated with the largest difference 
was chosen as the optimal threshold for that neuron.  

 
Training—Find the optimal number of neurons 

The neurons with the largest AUCs were then used in a 
majority vote on the training data to determine the optimal 
number of neurons to use in the algorithm. To find the 
optimal number of neurons for the decoder, combinations of 
the neurons with an AUC greater than 0.70 were used. A 
minimum of three neurons were used with the maximum 
number being the number of neurons that had an AUC 

Fig. 1  A Utah Electrode Array (UEA) was implanted in the M1 region of the 
motor cortex. The central sulcus is marked by an arrow. The letters A, P, M, 
and L refer to anterior, posterior, medial, and lateral respectively.  
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greater than 0.70. The data was moved through in a similar 
fashion as before, using a 400 ms window and a 40 ms step-
size. For each window, if the majority (>50%) of the 
neurons being used had their smoothed instantaneous firing 
rate rise above their respective optimal thresholds, then that 
window was counted as a detection. The algorithm 
recognized that a movement occurred if a microswitch 
closure for the movement type being evaluated occurred 
within the window. Based on the combination of detection 
and movement for each window, true and false positives and 
true and false negatives were determined (Table I). The 
group of neurons that yielded the largest TPR and the 
smallest FPR was considered the optimal group of neurons 
for that movement type and was used in the algorithm. 

  
Decoding 

The algorithm was tested on novel data and did not use 
any a priori knowledge of the data, task, or behavior. Each 
session included a given number of trials upon which to test 
the algorithm; the number of decoded trials ranged from 10 
to 147 trials for each movement type performed in the 
session with an average of 34.8 ± 21.9 trials. 

The optimal groups of neurons for each movement type, 
as determined by the training, were used in a majority vote 
method on the testing data. The testing data was moved 
through in time steps in a similar fashion as the training 
data, using a 400 ms window and a 40 ms step-size. For 
each window, if the majority of the neurons being used had 
their smoothed instantaneous firing rate rise above their 
respective thresholds, then that window was counted as a 
detection. If a microswitch closure occurred within the 
window for the movement type being evaluated, then the 
result was counted as a movement. Movement events were 
tracked in order to verify the accuracy of the algorithm. 
Based on the combination of detection and movement for 
each window, true and false positives and true and false 
negatives were determined (Table I). The TPR, or 
sensitivity, and FPR, or 1 – specificity, were each computed 
to measure the accuracy of the algorithm. This training and 
testing process was repeated for each of the thirteen 
sessions. 

 

III. RESULTS 

A. Neurons Demonstrate Robust, Differential Firing 
Rates for Each Movement Type 
Initial observations of the neuronal firing rate revealed 

that a change in the firing rate correlated with movement 
events. The change was typically an increase in firing rate 
(Fig. 2), although some neurons show a decrease in firing 

rate that is correlated with movement events. In both the 
rasters and the peristimulus time histograms (PSTHs), the 
movement event was aligned at time zero.  

B. ROC Curves Used to Identify Task-Related Neurons  
The ROC curves were constructed using the true positive 

rates (TPRs) and false positive rates (FPRs) from each of the 
trial thresholds. The area under the curve (AUC) was found 
to be larger for neurons that exhibited a distinct increase in 
firing rate just prior to movement. The differentiability 
between the AUC for each movement type for each neuron 
allowed for the training to identify the task-related neurons 
for each movement type (Fig. 3).  

 

 
 
Fig. 2  PSTHs and rasters for eight different neurons with the data 
aligned on movement, i.e. switch closure, at zero seconds. The rasters 
exhibit a band of activity that begins just before zero seconds. PSTHs 
demonstrate a distinct increase in firing rate just prior to each movement 
type. All movements are flexions except for IExt (30-1 signifies 
Electrode 30 Unit 1 and so forth, TIM = Thumb-Index-Middle, and IExt 
= Index Extension). 

 
 
Fig. 3  Three ROC curves for a single neuron. The areas under the curves 
were used to determine which neurons were task-related and also 
determined the preferred movement type of each neuron. The neuron 
shown was sufficiently tuned for thumb flexions to be used by the 
decoder. 
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C. Algorithm Performance is Highly Accurate  
The algorithm performed over a continuous, novel dataset 

with the median TPR, or sensitivity, being above 91% for 
each movement type except thumb-middle flexion, which 
had a median value of 88%. Furthermore, the median FPR 
values were less than 10% for each movement type (Fig. 4). 
As specificity is 1 – FPR, this indicates median specificity 
values were greater than 90% for each movement type. 
Results that were beyond ±2.7σ were considered outliers. 
Disregarding the outliers, the decoder performed across all 
movement types with an average sensitivity of 92.2 ± 2.5% 
and an average specificity of 92.6 ± 1.3% 

 

IV. DISCUSSION 

A. Utilization of Neurons near the Gyral Surface 
Neuronal recording and consequent decoding success has 

previously been obtained by recording neurons within the 
central sulcus that are up to 7mm deep to the cortical 
surface, demonstrating that many grasp related neurons are 
located deep in the central sulcus [9]. Our results show that 
task-related neurons associated with finger movements are 
also near the gyral surface in the M1 region of the motor 
cortex and can be recorded using a UEA of 1mm shank 
length. These results demonstrate that a chronically 
implanted array on the gyral surface records a sufficient 
number of task-related neurons to accurately decode 
individuated finger movements. 

B.  Implications for Neuroprosthetics  
The differentiability of the individual neuronal firing rates 

allowed for decoding very fine finger movements. Work 
done on decoding arm movements has shown that individual 
neurons have variable firing rates based on the direction of 
the movement, with each task-related neuron in the motor 
cortex having a preferred direction [2]. Similarly, individual 
neurons decoded in this study demonstrate variable response 
to various individual and combined finger movements, with 
many neurons exhibiting a preferred finger movement type. 
The training of the algorithm is able to identify the preferred 
neurons for each movement type, which would customize 
the algorithm for variations within each patient. The 
performance of the algorithm included an overall average of 
greater than 92% not only for sensitivity (TPR) but also for 
specificity (1-FPR) despite long periods of no movement. 
Having both a high sensitivity and a high specificity would 
be important in a neuroprosthetic application, as the no 
movement state is just as important as the movement states. 

The results indicate that this method of acquiring neuronal 
data using a chronically implanted UEA and then detecting 
and classifying finger movements with this algorithm yields 
high specificities and sensitivities for finger movements. In 
addition to research directed at developing arm and hand 
neuroprosthetics, this technique may also be useful in other 
areas of neural engineering. 
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Fig. 4  Decode accuracy denoted by a high true positive rate (TPR) and a 
low false positive rate (FPR) for each movement type. The TPR is equal 
to sensitivity, and the FPR is equal to 1 – specificity. The distribution of 
the decode results for each of the sessions across each movement type is 
shown. Data beyond ±2.7σ are considered outliers; outliers are marked as 
dots. All movements are flexions except for IExt (TIM = Thumb-Index-
Middle, IExt = Index Extension). 
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