
  

  
Abstract— This paper presents a method to automatically 

recognize events and driving activities during the use of a 
powered wheelchair (PW). The method uses a support vector 
machine classifier, trained from sensor-based data from a 
datalogging platform installed on the PW. Data from a 3D 
accelerometer positioned on the back of the PW were collected 
in a laboratory space during PW driving tasks. 16-segmented 
events and driving activities (i.e. impacts from different side on 
different objects, rolling down or up on incline surface, going 
across threshold of different height) were performed repeatedly 
(n=25 trials) by one operator at three different speeds (slow, 
normal, high). We present results from an experiment aiming to 
classify five different events and driving activities from the 
sensor data acquired using the datalogging platform.   
Classification results show the ability of the proposed method to 
reliably segment 100% of events, and to identify the correct 
event type in 80% of events. 

I. INTRODUCTION 
It is well recognized that mobility is an important factor 

for the social participation and quality of life of individuals. 
For people who live with locomotor impairments, mobility 
assistive devices such as manual wheelchairs, power 
wheelchairs, scooters, and other motorized vehicles can be 
facilitators of mobility [1]. In Canada, 5% of community 
living and 50% of 65 years and older individuals living in 
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institutions use manual or powered wheelchairs [2]. Using a 
PW is a complex task whose efficiency and safety are 
modulated by factors such as individual capacity, wheelchair 
driving skills, design and technology features of the PW, 
environmental considerations, driving the PW as an activity 
and interaction effects between these factors [3]. Although 
PW mobility has many potential benefits for users, PW 
incidents and accidents are not uncommon and their 
consequences can be serious [4-6]. While there is no 
extensive published evidence, such incidents are often caused 
by unsafe behavior, sometimes combined with poor 
wheelchair driving skills. To date, little research has explored 
PW mobility safety, and no gold standard exists to determine 
whether a user’s skill-level makes him or her a safe driver in 
real life. To improve powered wheelchair driving skills of 
users and also wheelchair design in terms of safety and 
performance, a better characterization of wheelchair users’ 
driving behavior is required, in various real and ecological 
indoor and outdoor settings [7].  

A collaborative research program on PW use and its 
impact on mobility and social participation was started in 
2008 with the purpose of developing and testing outcome 
measures and technology that can enhance effective and safe 
PW use in adults [8]. This paper presents a method to 
automatically recognize events and driving activities during 
use of a PW. The method trains a support vector machine 
classifier, using sensor-based data collected from a 
datalogging platform installed on a PW. The full dataset 
includes 16 segmented tasks and multiple sensor sources. 
Preliminary results focusing on automatically distinguishing 
between five of those events using data from one sensor 
source (3D accelerometer) are presented to test the 
robustness of the method.  

II. DATALOGGING PLATFORM FOR MONITORING PW USE 
A proof of concept for a measurement approach to monitor 

real life use of PW was developed and is currently in use 
with a sample of PW users. The platform, called wireless 
inertial measurement units with GPS (WIMU-GPS) (Figure 
1) consists of a datalogger with embedded sensors connected 
to external sensors installed on the PW. The sensors and 
components embedded into the WIMU-GPS consist of the 
following: inertial measurement unit (triaxial accelerometer, 
a triaxial gyroscope and a triaxial magnetometer, to compute 
pitch, yaw and roll angles of the module); a SIRFIII global 
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positioning system (GPS) receiver; a 16-megahertz low 
power micro-processor and multiple I/O to connect external 
sensors; a Zigbee radio for wireless communication; a 2 Gb 
microSD card; a rechargeable 1 Ah Lithium-Ion battery. The 
external sensors include first a Force Sensing Resistor (FSR) 
array (3x3) mounted on a Plexiglas sheet fixed under the seat. 
Ultrasonic range finders (sonars) located at five positions on 
the PW (front, back, left, right and top) returns the distance to 
the nearest obstacles. The control signals from the user’s 
joystick are captured, allowing correlation of the user’s input 
with outcome (e.g., impact) for a specific environment. A 
wheel encoder counting the number of wheel revolutions 
provides the linear speed and an estimation of the distance 
traveled by the wheelchair. The platform is installed on the 
user’s PW by a technician and runs on its own battery. In this 
preliminary analysis, we used only the data from the 3D 
accelerometer. The rationale for this choice was to limit the 
number of sensor inputs in order to explore the power of the 
proposed event detection and classification methods under a 
set of distinct and similar driving tasks.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Overview of datalogging platform (WIMU-GPS) 

III. METHODS FOR ACTIVITY AND EVENT RECOGNITION 
USING SUPPORT VECTOR MACHINE CLASSIFIER  

A. Data Acquisition Procedure 
One user with no physical and cognitive impairments 
performed specific PW driving tasks under controlled 
conditions. 16 segmented tasks were performed repeatedly 
(n=25). Tasks varied (e.g., impacts from different sides on 
different objects, rolling up or down inclined surface, going 
across thresholds of different height) and were performed at 

three different speeds (slow, normal, high). The execution of 
the tasks was standardized (i.e. start and completion of tasks 
were delimited, and distances when accomplishing the tasks 
were the same). Data from the 3D accelerometer of the 
WIMU-GPS positioned in the back of the PW seat were 
recorded for each repetition. Throughout the experiments 
reported below, we focused first on distinguishing between 
five different types of events (3 types of impacts and 2 
driving activities.) These are listed in Table 1. The events and 
activities were selected to test the robustness of the classifier 
by choosing events with similar features.   
 

TABLE 1. EVENT TYPES TO BE CLASSIFIED 
Label Event type 

Class A Rolling down 1 inch slope at slow speed  
Class B Rolling down 1 inch slope at high speed  
Class C Side impact to an object with normal speed  
Class D Frontal impact to fixed object at normal speed 
Class E Frontal impact to moving object at normal speed 
 
The dataset was divided into two sets: a training set and a 

validation set. For each event type, 15 recorded instances of 
the event were allocated to the training set, and 10 instances 
were allocated to the validation set. 

B. Signal Processing 
We calculated the magnitude of the acceleration (denoted 

x, y, z) at each sample point, and normalized each parameter: 

, where µ is the mean of 
each parameter and σ is its variance along a window of size 
28 sec, which is approximately the duration of one event. The 
signal β was then smoothed by performing a convolution 
with itself shifted by 0.4 sec. 

C. Event Segmentation 
The second phase consisted of extracting events-of-interest 

from the time series. At this point, the type of event was not 
considered; the goal was simply to identify segments of the 
data that feature notable events. Using the K-means 
algorithm [13], the full dataset (including all events, in both 
training and testing data) was divided into two classes: one 
was assumed to include the target events, whereas the other 
included the data points out of notable events window.  
Figure 2 presents a sample segmentation.  

Labeled data were not available to formally evaluate the 
quality of the segmentation; quality was evaluated by visual 
inspection. This approach was reasonable for the current 
dataset, because the number and approximate timing of 
events were known. Using this simple method, we were able 
to correctly segment all known events.  At this stage, we have 
identified events of interest but they are not classified by type 
of event. 
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Figure 2. Input data is segmented into two groups: notable events (red) and 
general data (black) 

D. Feature extraction 
The method of time-delay embeddings was adopted for 

extracting the features necessary for the automatic labeling of 
events. The goal of time-delay embeddings is to capture the 
state and dynamics of an unknown dynamical systems from 
samples of that system [10]. This method has shown good 
properties in terms of automatically classifying dynamic 
events from accelerometer data [9]. 

Consider a time-series sampled at discrete intervals, where 
st is the sample taken at time t.  We embed the signal in an m-

dimensional space: , where 
m>1 and T>1 are parameters of the embedding process.  
Each point st

E∈ℜm in the embedding corresponds to an 
observation vector from the time-series. Principal 
components analysis is performed on the embedding of a set 
of points constructed as described above [11]. This produces 
a lower-dimensional embedding, st

E ∈ℜk (k<m), with 
reduced noise. This embedding is considered a sufficient 
model for the dynamic process that generated data, and can 
be used for various purposes, including generating new 
synthetic traces, or identifying distinct events, as in our case. 

Using the data recorded as described above, we 
constructed separate embeddings for each event type, and 
accelerometer dimension.  We denoted these Xi, Yi, Zi, where 
i= {A, B, C, D, E} is the set of event types listed in Table 1. 
We used the same parameters, m=16, T=0.1sec, k=5, to 
construct all embeddings. Note however that only datapoints 
extracted from event type i were used to build embeddings 
Xi, Yi and Zi (and similarly for each type of event). 

Given a new segmented data point, (xt, yt, zt), we projected 
it into each embedding, Xi, Yi, Zi, ∀i.   We then measured the 
distance between xt

i and the closest point x in Xi : 

, and similarly for Yi and Zi, ∀i.  The set of 
measurements, f(xt

i), is the feature set used for the event 
classification step.  Datapoints for each embedding are stored 
in a KD-tree, to permit fast nearest-neighbour lookup. 

E. Event Classification 
Given a dataset, D, where each point is described by a 

feature vector {f(xt
i), f(yt

i)t, f(zt
i)}i=1..N, supervised learning 

techniques can be applied to find a mapping from feature 

space to event identity. For this step, we used a Support 
Vector Machine classifier [12], one of the most successful 
methods for classification tasks. The features extracted from 
the training set were used to build the embeddings, and to 
train the classifier. But whereas embeddings are built using 
data from a single event type, when training the classifier we 
considered features {f(xt

i), f(yt
i)t, f(zt

i)}i=1..N, thereby 
comparing the current point (xt, yt, zt) to its nearest neighbour 
in embeddings of all event types. The superscript in the 
extraction vector denotes the projection of this point onto the 
embedding of event type i (and does not mean the point was 
collected while performing that event). The SVM was 
implemented with a degree=2 polynomial kernel. Rather than 
use multiclass classification, we considered a set of binary 
classifiers: each binary classifier decides whether the given 
feature vector is from class A or class B (and so on, for a total 
of 10 classifiers in the case of five event types); voting is 
used to obtain the final classification. 

IV. RESULTS 
Using the approach outlined above, we report on the 
classification performance as measured on the testing dataset. 
Table 2 shows the confusion matrix, reporting, for each event 
type in the testing dataset, the number of samples that were 
classified as belonging to each of the five event types 
considered. We observe that a majority of samples from 
classes A, B and D were correctly classified, however a 
number of samples for classes C and E were misclassified. 
 
TABLE 2. CONFUSION MATRIX SHOWING THE PROPORTION OF SAMPLES THAT 

ARE ATTRIBUTED TO EACH CLASS (REFER TO TABLE 1 FOR A GUIDE TO THE 
TYPES OF EVENTS.) 

 Predicted class according to SVM classifier 
True event type A B C D E 

A 0.5599     0.1262     0.1150     0.0168     0.1821 
B 0.1530     0.7339     0.0667     0.0009     0.0456 
C 0.1593     0.2925     0.3751     0.0059     0.1671 
D 0.0010     0.0299     0.0008     0.9609     0.0074 
E 0.3578     0.1238     0.1875     0.0453     0.2855 

 
Recall that the test set included five instances of each event 
type. Instead of considering the classification performance on 
a per-sample basis, we also considered the classification 
performance on a per-event basis. To automatically assign a 
classification for a full event, we assumed a majority voting 
rule, including all the samples from that event (considering 
only the events segmented as explained above). As shown in 
Table 3, overall, our approach correctly segmented and 
classified 80% of the events tested. All events from classes 
A, B and D were correctly classified. Events from class C 
were also mostly correctly classified, however four out of 
five events in the class E (Frontal impact with moving object 
at normal speed) were confused with class A (Rolling down 1 
inch slope in slow speed).   
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TABLE 3. PREDICTION OF EACH EVENT IN THE TESTING SET ACCORDING TO 
THE SVM CLASSIFIER 

Instance Class A Class B Class C Class D Class E 
1 A  B  C  D     A 
2 A        B     C          D A 
3 A     B     B     D     A 
4 A B C D E 
5 A B C D A 

 
Figures 3, 4 and 5 show how some instances of activity type 
A, D and E are classified. In all three, purple represents 
activity A, B is blue, C is green, D is cyan, and E is red. The 
black points correspond to non-event samples. Similar 
figures for events from classes B and C are omitted due to 
lack of space. We observe that the time series containing 
events of type A and E share similar characteristics, however 
these figures show only the total (normalized) magnitude of 
the acceleration, not the features used for classification. We 
hypothesize that the use of additional sensor information 
would improve classification accuracy of class E events. 
 

 
Figure 3. Classification of events of class A 
 
 

 
Figure 4. Classification of events of class D 

V. CONCLUSION 
The proposed method reliably segmented PW events and 

driving activities and was able to identify the correct event 
type in 80% of events. Considering that only one source of  

 
Figure 5. Classification of events of class E 
 
sensor data (i.e. 3D accelerometer) was used and the event 
classification was performed on data with similar features, 
the results obtained support segmentation and classification 
method. In future experiments, we plan to expand the event 
identification methodology to draw a complete wheelchair 
users’ behavior profile, and to link together measures related 
to global outcomes and driving performance (mean driving 
speed, distance traveled, etc.) with behavior in specifically 
identified events, such as collisions, maneuvering in tight 
corners, or driving on inclined surfaces. This research will be 
accomplished by characterizing PW use from multiple sensor 
sources in a controlled environment.  
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