
  

  

Abstract—The primary problems of brain-computer 
interface (BCI) are the low channel capacity and high error 
rate. Therefore, an assistive motion control method is important 
for the brain-actuated robot to realize real-time and reliable 
control. To make the brain-actuated robot respond to the 
external environments with more flexibility, a shared control 
method based on fuzzy logic is proposed. Experimental results 
obtained with ten healthy voluntary subjects show that the 
proposed fuzzy-based shared controller has improved 
performance compared with direct control approach. 

I. INTRODUCTION 
HE idea of mentally controlling a device is a technical 

and social dream that now is turning into reality. Among 
the many BCI modalities, the non-invasive techniques, such 
as electroencephalography (EEG) recorded from the scalp, is 
of particular interest. It bears advantages of less workload for 
the brain and low cost. However, the low channel capacity 
offered by such non-invasive signals makes their use in 
controlling rapid and complex sequences of robot movements 
difficult [1,2]. An approach to alleviate this relies upon 
machine learning techniques to find subject-specific EEG 
features with maximal inter-task differences, and to train 
classifiers that minimize the classification error rates. 
Another solution to the low bandwidth problem of BCI is to 
incorporate increasing adaptive shared autonomy in the 
agents that execute BCI commands, such as a wheelchair with 
obstacle avoidance [3,4]. 

The shared control techniques has a profound impact on the 
BCI performance for a robotic assistance [5]. A next step in 
the development of shared control techniques would be to 
make the system more capable of handling real world 
uncertainty and knowledge representation to maximize user 
control of the brain-actuated robot. In this paper, we propose 
a fuzzy-based shared control method and implement it 
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between the BCI and the robot. One advantage of this control 
method resides in that the fuzzy logic approach can deal with 
various situations without analytical model of the 
environments [7-9]. Moreover, it allows robotic system to 
reason more closely as humans. As a result, the system can 
execute effectively high-level commands associated with the 
users’ mental commands for obstacles avoidance and smooth 
turns. 

II. METHOD 

A. Brain-actuated Robotic System Structure 
Fig. 1 shows a schematic representation of the shared 

control architecture for the brain-actuated robotic system. The 
system consists of two parts, namely, the BCI system and the 
intelligent robotic system. Our BCI system is implemented 
with the general-purposed BCI 2000 software [6]. The robot 
used is an ActivMedia Pioneer P3-DX robot with three 
wheels equipped with different sensors including a pan-tilt 
camera, SICK LM200 laser and sonar for environmental 
information acquisition.  

 
Fig.1. Architecture of the brain-actuated robotic system. 

 
The shared control module consists of inputs fuzzier, 

behavior pool and fuzzy-based intelligent controller. In our 
controller, both the users’ mental state, the robot’s sensory 
information, motion behavior and velocities are the inputs to 
the shared controller which translates the inputs to proper 
motor commands, represented by a translational (υ) and 
rotational (ω) velocities. Given the environmental 
information, each behavior calculates its appropriateness 
based on fuzzy rules. The controller then applies fuzzy 
control rules again to determine which behavior in the 
behavior pool is activated. The shared controller chooses 
appropriate behavior combining the recognition results and 
operator’s commands. Therefore, the intelligent robot with 
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fuzzy-based shared control will alleviate the problem 
associated with the low accuracy or signal rate in BCI.  

B. Fuzzification of the Input-output Variables 
Fig. 2(a) shows the layout of robot indoor navigation 

environment. It has several labs and offices along the corridor. 
The bottom left picture is the map of one typical lab, in which 
the white sticks and black spots represent lab tables and chairs, 
respectively. The bottom right of Fig. 2(a) is a snapshot of the 
lab. A pattern matching algorithm is implemented to map the 
raw laser sensory readings into 8 classes of environmental 
states (i.e. the robot’s perceptual states) as shown in Fig. 2(b). 
They are “straight path”, “left L-shaped road”, “T-crossroad”, 
“right L-shaped road”, “crossroad”, “right T-crossroad”, “left 
T-crossroad”, and “dead end”. 

 

 
(a)                                                    (b) 

Fig. 2 (a) The layout of typical office environment for mobile robot 
navigation (b) Path shapes. 

 
The behaviour of the robot is determined by the three 

mental states (forward, left, right) of the user as well as the 8 
perceptual states of the environment determined by the 
robot’s sensory readings. Moreover, the controller uses two 
other inputs, internal memory variables for the current 
behaviour, such as the distance to the wall and motion 
velocities. A linguistic variable x in a universe of discourse 
U is characterized by { }1 2( ) , ,..., k

x x xT x T T T=  and 

{ }1 2( ) , ,... k
x x xM x M M M= , where ( )T x  is the term set of x  

with each value i
xT  being a fuzzy number with membership 

function i
xM defined on U . So ( )M x is semantic rule that 

associates each value with its meaning. For our system, the 
input vector X includes four input linguistic variables

1 2 3 4{ , , , } { , , , }X x x x x S C B V= = , where S, C, B and V indicate 
sensory information, mental commands, behaviors and 
motion velocities respectively.  Therefore, we have 

1
{ST,L,R, LRC, LC, RC, CROSS, END},xT = with the 

corresponding meaning of {straight path, left L-shaped road, 
right L-shaped road, T-crossroad, left T-crossroad, right 
T-crossroad, crossroad, dead end}; 

2
{ },L,R,SxT =  with the corresponding meaning of 

{ }left turn, right turn, stop ; 

3
{ },b-ST,b-L,b-R,b-LW,b-RW,b-STOP,b-SLOW,b-FASTxT =

 with the corresponding meaning of {straight, left turn, right 
turn, along the left wall, along the right wall, stop, slow down, 
accelerate}. 

The motion velocities vector 4x  have two inputs variables, 
i.e. υ and ω. Therefore, 4 41 42{ , } { , }x x x v w= = . Since the 
rotation velocity provides more information about the 
behaviour of the robot, seven fuzzy sets are used to define it, 
while five terms are assigned to the translation velocity. v  
and w are expressed by linguistic values {NB,NS,ZO,PS,PB} 
and {NB,NM,NS,NO,PO,PS,PM,PB}, respectively. The 
linguistic term symbols have the following meanings: 
N: Negative  B: Big       M: Middle   
S: Small          Z: Zero      P:  Positive. 

Following the above definition, the input vector X  and the 
output state vector Y  can be defined as 

{ } { }( ){ }1 2 1 2
1..., , , ,..., , , ,...,i i

i i i i i i

k k
i i x x x x x x i nX x U T T T M M M ==   (1) 

{ } { }( ){ }1 2 1 2
1..., ', , ,..., , , ,...,i i

i i i i i i

l l
i i y y y y y y i mY y U T T T M M M ==     (2) 

The membership functions of the fuzzy sets defined for the 
υ and ω are shown in Fig. 3. In this study, triangular shapes 
are chosen to simplify the computation. 

 

 
(a) 

 
(b) 

Fig. 3 (a) Membership function curves of angular velocity (b) Membership 
function curves of linear velocity. 

C. Rule Base Construction 
The rule bases for realizing each behavior can be 

constructed based on human experience. However, using a 
fuzzy logic controller (FLC) for mobile control has the 
problem that rules increase exponentially with the number of 
variables involved. Since the robot has five inputs in our 
study, this results in the rule bases as large as 6720 
(8×8×7×5×3), which causes problems for the robot’s real- 
time performance and the FLC design. To cope with this 
problem, a optimization strategy is applied to hierarchically 
decompose the control problem. Moreover, we break down 
the input space for analysis by sharing it among multiple low 
level behaviors, each of which responds to specific types of 
situations, and then integrate the recommendations of these 
behaviors. For example, on the ‘straight’ path, both 
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translation and rotation velocities have no effect on the 
behavior choice. In the ‘left turn,’ ‘right turn,’ and ‘dead end,’ 
cases, the amplitude of translation velocity has no relation to 
the behaviour choice. When a ‘stop’ mind command is issued, 
the ‘stop’ behavior would be selected no matter how much 
each of the other input is. After the decomposition, the total 
number of control rules reduces to 83. The rule bases for the 
behaviors consist of the rules taking the form of IF-THEN 
statements: 

: (X=T ) ( [ , ])k
n n k kR IF THEN Y v w=           (3) 

where k
nR denotes the nth rules associated with the kth 

behavior. Also, nT  with 1,2,..., kn N= are the linguistic 

value vectors. The rule based for the kth behavior kR can be 
represented as the union 

1

kN
k k

n
n

R R
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∪ .                 (4) 

The nth rules are the fuzzy relations in product spaces,

1 2 3 4x x x x w vU U U U U U× × × × × . Thus, the rules can be 

implemented as fuzzy relations with corresponding 
membership functions. The membership values of nth rule 
will be denoted by wμ and vμ . When the input 

{ ', ', ', '}X S C B V= are given, the fuzzy control actions 'V and 
'W  are inferred by 

'

1

'

1

', ', ', '

', ', ', '

( ) ( )

( ) ( )

k

k

N
k
n

n
N

k
n

n

S C B V

S C B V

V R v

W R w

=

=

=

=

D ∪

D ∪
.           (5) 

where 。denotes the maximum-minimum composition.  

 In order to determine the output action, iv and iwG , for 
the ith behavior from the fuzzy control actions, 'V and 'W , a 
defuzzification process is required. When the method of the 
center of gravity [9] is used for defuzzification in the case of 
discrete universe, crisp control actions are expressed by 

' '
1 1

' '
1 1

( ) ( )

( ) ( )

p p
k k k

n V n V n
i i

q q
k k k

n W n W n
i i

v v v v

w w w w

μ μ

μ μ

= =

= =

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑
,         (6) 

where p and q denote the number of quantization levels of the 
fuzzy output actions, 'V and 'W , in each behavior, 
respectively. 

III. EXPERIMENTAL RESULTS 
The objective of this experiment is to investigate the 

performance of fuzzy-based shared control method for BCI- 
robot navigation task. Moreover, the impact of the signal 
arriving time (SAT) and the control modes are also studied in 
this test. The main hypothesis for this experiment is that the 
participants should navigate the robot to the destination better 
under shared control mode than direct control (human 

commands only). It is expected that the increase of SAT 
would affect the performance of tasks. 

Experiments were carried out in a simulated environment 
based on our developed BCI-Mobilesim system [6].  The 
whole experiment data were obtained from 10 volunteers, 
eight females and two males. The average age of the 
participants was 26 years (SD = 2.36), with a range from 24 to 
30 years.  Regarding to control tasks, all participants had no 
prior experience. The subjects were instructed to navigate the 
simulated robot through a way to the target in as short time as 
possible without hitting anything as depicted in Fig. 2(a). To 
compare the performance under two control modes fairly, 4 
times random wrong operations were added to simulate BCI 
system performance. In our setting, the universe of discourse 

41U of translation velocity (υ) is [-300,300] (mm/s) which is 
the settings of the real robot. It is discretized into 21 levels 
{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,  
10} with five terms defined for it. The universe of discourse 

42U of rotation velocity (ω) is [-50,50] (rad/s). With the 
quantization level, the universe discourse is discretized into 
11 segments between [-5,5]. 4U  is transformed into the 
normalized closed interval [-1,+1] with the normalization 
factor 1/10. 

Experimental procedures were developed for both training 
and testing sessions. During the one hour training session, 
subjects were introduced to the system operation and 
experimental protocol. Two variables were manipulated in 
the experiment including SAT and control mode. There were 
two SAT conditions including 0.5b/s and 1b/s. Each 
participant experienced two kinds of control mode, including 
direct control and shared control. The number of effective 
operation (correct actions to navigate the robot to the 
destination), misoperation, collision, completion time, and 
total distance were recorded during the experiments as the 
performance metrics. 

 

 
 
(a) The environment in which the experiment was performed and the 
pre-specified path. 
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(b) The robot trajectories for direct control (up) and control with shared 
control method (down) when the SAT is 0.5b/s. 
 

 

 
 
(c) The robot trajectories for direct control (up) and control with shared 
control method (down) when SAT is 1b/s. 
 
Fig 3 The control trajectories comparison between direct control and 
control with shared controller under different transformation rate. 

 
TABLE I 

STATISTICS OF PERFORMANCE  
Performance SAT 0.5b/s SAT 1b/s 

   Direct Assistive Direct Assistive 
Effective  
operation (Times) 

28 16 27 14 

Misoperation  
(Times) 

6 2 4 4 

Completion  
Time (s) 

112 91 103 86 

Collision (Times) 17 4 13 3 
Distance (cm) 28.00 22.75 25.75 21.50 

 
All the ten subjects successfully completed the four- 

section experiment. They were able to navigate the simulated 
robot from the starting position to the target. The evidence 
values for the same control task under different control 
conditions are shown in table I while the comparative 
trajectories for the experiment under different conditions are 
shown in Fig. 2(b) and Fig. 2(c). Analyses of variance 
(ANOVAs) were applied to the various dependent variables 
to investigate the influence of control mode on the task 
performance. The results were significant with p<0.05. 
Correlation analyses were also conducted to identify any 
significant relationships among completion time, number of 
misoperation, collisions and effective control and total 
distance. 

Fig. 3 shows that the subject does make some loops under 
direct control mode. The mobile robot can smoothly navigate 
through environment. Thus, fuzzy-based shared controller 
could definitely help here. The results of an ANOVA on the 
entire performance variables under the two control modes 
revealed that there was significant main effect of shared 
control mode on task completion time. The correlation 
analyses indicate a significant positive interaction between 
control mode and SAT on completion time and total distance: 
F = 1.24 and p = 0.2734, F = 1.97 and p = 0.1685. However, 
there is less interaction on the number of effective operation, 
misoperation and collision. These results reflect the fact that 
the control mode is beneficial to the whole control 
performance.  

IV. CONCLUSION 
In this paper, a fuzzy logic based shared controller was 

developed for the motion control of the brain-actuated robot. 
The performance of the adaptive shared control strategy 
suggests the fuzzy logic technique may provide an effective 
solution to design a shared control BCI system. It has been 
proved successfully in combining the obstacle awareness sent 
by the laser sensor with the intentions of the operator to 
provide near optimum navigation without prior knowledge of 
the environment. The overall performance of the robotic 
system was improved significantly by correctly matching the 
selected task to a given situation.  

We are currently planning more extensive tests to evaluate 
the adaptive fuzzy shared strategy with real-time online BCI 
control. In these tests the robot will be required to perform a 
number of tasks with increasing difficulty. 
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