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A hybrid brain interface for a humanoid robot assistant

Andrea Finke, Andreas Knoblauch, Hendrik Koesling and Helge Ritter

Abstract— We present an advanced approach towards a semi-
autonomous, robotic personal assistant for handicapped people.
We developed a multi-functional hybrid brain-robot interface
that provides a communication channel between humans and a
state-of-the-art humanoid robot, Honda’s Humanoid Research
Robot. Using cortical signals, recorded, processed and translated
by an EEG-based brain-machine interface (BMI), human-robot
interaction functions independently of users’ motor control
deficits. By exploiting two distinct cortical activity patterns,
P300 and event-related desynchronization (ERD), the interface
provides different dimensions for robot control. An empirical
study demonstrated the functionality of the BMI guided hu-
manoid robot. All participants could successfully control the
robot that accomplished a shopping task.

I. INTRODUCTION

PEOPLE with motor control deficits often need assistance
to accomplish every-day tasks. Depending on the kind and
degree of impairment, different types of assistive technology
are required: for instance, a wheelchair for moving around
or a special interface to assist communication. Recently,
the advances in the robotics field have led to constantly
growing abilities of robots. They can now act autonomously
and adapt to new, changing situations. This makes robots
a promising platform for assistive technologies. Although
one could think of a robotic assistant as a fully autonomous
system, humans usually prefer to retain a certain degree of
(eventually) optional control over the technical system [1].
To implement additional control channels for an autonomous
technical system, one or more suitable input modalities need
to be identified. This becomes increasingly difficult the more
severe the motor impairment of a patient is because almost
all possible input channels require at least some basic motor
action (i.e. manual input, speech). We propose to use purely
cortical signals - recorded, processed and translated by an
EEG-based brain-machine interface (BMI). Such a BMI
provides an input channel that functions independently of
the severeness of the person’s motor impairment and can be
used to control an otherwise autonomous humanoid robot.

State detection for a brain-robot interface The as-
sessment of cortical signals by the non-invasive EEG is
restricted to the detection of specific states. In the context
of robot control such states are usually cortical correlates
of movements which indicate that a particular limb (e.g.

A. Finke and H. Ritter are with the Research Institute
for Cognition and Robotics (CoR-Lab), H. Koesling is with
the CITEC, Bielefeld University, 33615 Bielefeld, Germany

{afinke, helge}@cor-lab.uni-bielefeld.de,
ihkoesli@techfak.uni-bielefeld.de

the left hand) is moving. In this example, the detected
state is “left hand is moving”. Direct process parameters
(e.g., joint angles, velocity, direction) cannot be extracted
from EEG recordings. The extraction of motor-related states
is feasible during executed, and more important, purely
imagined movements and therefore essential for people with
motor control deficits.

While, as stated above, invasive interfaces are suited to
control actions on joint level, for current state-of-the-art
robots the direct access to individual degrees-of-freedom
(DOFs) by a human controlled interface is not necessary.
At this point it is important to distinguish between two
different control strategies: a process-directed and a target-
directed strategy [2]. A process-directed strategy aims at
controlling as many parameters of a process as possible. A
target-directed strategy defines only targets, that is, discrete
points or states of an eventually continuous process. Then,
only state changes from one target to another are triggered,
while all necessary intermediate steps or actions run in an
autonomous manner.

II. THE HYBRID BMI SYSTEM

We have developed an EEG-based, hybrid BMI with a
highly modular structure to account for the needs of brain-
robot interfaces, in particular to allow for easily interfacing
to different (humanoid and other) robots. In the presented
study, we use Honda’s Humanoid Research Robot. Our BMI
system is hybrid in the sense that, in contrast to most other
current BMIs, it exploits two distinct cortical activity patterns
to increase the number of control dimensions provided by the
interface.

More specifically, the incoming raw data stream is con-
stantly scanned for both patterns. This is achieved by initially
processing the data in two parallel classification pipelines,
each optimized to detect the particular pattern. Subsequently,
in a second step, a pattern selection algorithm fuses the
outputs from the pipelines and decides on the final system
output, which may be a real-valued confidence or a discrete
class label. We will refer to the whole processing procedure
as state detection, and to the final system output as state.
Basically, this approach is suited for any cortical activity
patterns that can be reliably detected in EEG data, not
necessarily restricted to two patterns.

Our hybrid BMI employs the P300 potential and event-
related (de)synchronization (ERD), which are both common
in many BMI applications (see [3] for an extensive overview
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Fig. 1: Schematic illustration of the state detection process
in the hybrid BMIL.

can be produced volitionally by a human without external
cues.

State detection The individual classifiers for P300 and
ERD detection are trained in advance. The training data for
each classifier is acquired during independent sessions. For
the P300, only one short off-line session is needed prior to
using the interface. In case of ERD, training is not only
limited to machine learning, but also the human needs to
learn to produce ERD volitionally. Thus, the human user
needs to acquire a new mental skill. This skill demands some
feedback-guided training, for example in a visual or auditory
modality[4].

Classifier parameters are optimized subject-specific on the
training data. In both cases (P300 and ERD), feature extrac-
tion and classification methods are linear. We use principal
component analysis (PCA) for the P300 and common spatial
patterns (CSP) for ERD, which are both approved methods
in the context of on-line BMIs [5], [6], [7]. The subsequent
classification step is done by linear discriminants (FDA). All
three methods can be formulated as linear optimization tasks
[8] that require solving a generalized eigenvalue problem
on the covariance matrices of the data. In case of PCA, an
unsupervised method, the second matrix becomes the identity
matrix. CSP and FDA are both trained in a supervised
fashion. Precisely, the FDA can be described as a special
case of the CSP where the output dimension is fixed to 1.
By solving these three optimization tasks on the training
data, four projection matrices are obtained for use in the
final system, two for each processing pipeline of the hybrid
system. Fig. 1 illustrates the state detection process.

We have evaluated our method for hybrid classification in
a simple benchmarking setting as we reported in [9].

III. THE BRAIN-ROBOT ASSISTANT SYSTEM

Humanoid robots are a challenging platform for a BMIL.
We use Honda’s Humanoid Research Robot, one of the most
advanced humanoid robots currently available. This robot is
endowed with sophisticated internal controllers for walking
and for controlling the upper part of the body (whole body
motion, WBM [10]) including solving the inverse kinematics
problems and self-collision avoidance.

We defined a set of high-level action units. Currently,
these action units are “step”, “turn”, “grasp®, “raise”, “drop”,
“carry” and “return”. These units may be combined to form

action sequences. The system controller has only direct
access to these units. All detailed parameters, including
kinematic computations, are fixed by the robot’s internal
WBM controller. The constructed action sequences are suited
to accomplish simple, every-day tasks, like grasping an
object and bringing it to the human. This is useful, for
instance, in a scenario where the robot assistant helps the user
in a shop to collect desired items. We use such a simplified
shopping scenario because it is a task with a high practical
relevance. Currently, the system is implemented in the way
that the user may navigate the robot through the store by
means of BMI control to select the items he/she wants to
collect, while grasping and returning the selected items is
accomplished autonomously by the robot. For navigation, the
user can select one out of four directions (forward, backward,
right, left) to let the robot execute single steps, or to turn in
place to the right or left side. Stepping is controlled by the
P300 component, turning by imagining a movement of the
right or left hand (ERD). Thus, only high level actions need
to be controlled explicitly.

IV. EXPERIMENTAL SETTING

Environment All experiments were conducted with the
real, physical robot. For testing our system in a controlled
fashion while allowing for a realistic task, we created a
simplified “store” in our lab. The “store” consists of 3
shelves, arranged at three sides of a rectangular area. Ten
baskets in different colors are placed on these shelfs. Fig.
2 shows screenshots from the robot simulation. The setup
visualized in the images is equivalent (including size and
distance relations) to the real setup in our robotics lab during
the experiments. The robot is endowed with a map of the
store, such that it can act in the “store” without the need
for additional sensory (e.g. visual) information. This would
overload the complexity of the overall system in this initial
testing phase.

Task The task of the BMI user is to collect five out of
the ten “baskets* by navigating the robot close to the item.
The items and the order of collecting them is fixed by the
experimenter and equal for each subject. This is essential for
inter-subject comparability of the sessions, although it limits
the participant’s freedom of how to use the interface. The
subject is seated in a chair at a position that enables him/her
to see the whole scene. Two computer screens are placed on
the floor in the participant’s field of view. One is used to show
a ”shopping list* providing the sequence of baskets to collect.
The other screen is used to show the stimulus presentation to
evoke P300 potentials. As common for P300-based BMIs, the
visual stimuli (here arrows indication the stepping directions)
flash in arbitrary order. The user focuses attention onto the
stimulus of his/her choice, such that this target evokes a
neural response while the others do not. For each action,
he is free to choose between attending to the stimuli or
ignoring them; thus, requesting the robot to either step or
turn. Stepping is possible in the four directions (indicated
by the stimulus arrows): forward, backward and sidesteps to
the left or right side, resulting in a discrete mapping of class
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Fig. 2: Screenshots from the robot simulation at different
stages of the scenario. The participants had the same view on
the scene in the lab. Note that all experiments were conducted
with the physical robot in the lab.

labels. Turning, however, is accomplished in a continuous
fashion. The real-valued class confidence is translated into
an angle that is proportional to the degree of confidence.

Participants Seven participants took part in the study, all
male, aged between 21 and 40. One participant was excluded
from quantitative analysis such that six valid sessions with
complete data are considered for evaluation. All results
reported here are based on these six data sets. One participant
had already used our BMI before in a different study, all
others were naive to BMI usage.

Preparations We used a setup with 16 electrodes,
mounted at the locations Fz, F3, F4, Cz, C3, C4, C5, C6,
CP3, CP4, Pz, P3, P4, PO7, POS8 and Oz, according to the
extended international 10-20 system and referenced to the
mastoids (A1, A2). All impedances were below 5 k2. Data
was acquired with a gUSBamp (Guger Technologies) EEG
amplifier at a sample rate of 256 Hz.

All participants had to train the skill of motor imagery
(MI) to achieve a satisfactory degree of control over their
ERD pattern. Therefore, they conducted three sessions of
pure MI training on different days, with about a week
pause between. On the day of the experiment, an off-line
P300 session was completed for gathering P300 training data
and another shortened MI training. Afterwards, the session
with the real robot started. The whole experiment including
electrode preparation took about 2.5 hours per person.

Robot experiment The experiment starts with the robot
standing at its starting position (a defined place in the middle
of the “store”), averted from the subject. The sequence of
actions (BMI or system controlled) executed to collect one
basket is called a trial. During a trial, the user can navigate
the robot as long as it stays in the BMI zone. When the
robot finishes a ”step” or “turn” action, the system triggers
a new P300 stimulus presentation and requests a new state
decision from the data processing module. For safety reasons,

the robot will only leave the BMI zone and step close to a
shelf when a basket has been reached and the robot prepares
for grasping. For a basket to be considered selected, the
Euclidian distance between the robot and the object must
be smaller than a threshold. Then, the robot will execute
the grasping action autonomously and carry the basket to a
box, where all items are collected. Afterwards, it returns to
its starting position and the BMI control for the user is re-
enabled. This procedure is iterated until all five objects have
been successfully collected and placed in the box.

V. RESULTS AND DISCUSSION

The evaluation of the system performance relies on four
major aspects:

1) A comparison of the number of actions (steps/turns)
needed to select a basket using the brain interface with
the ideal, minimal number of actions required (given
perfect knowledge about the environment).

2) The variance among the participants.

3) The number of actions compared to the expected
number of correctly classified states (determined from
our previously reported evaluation study [9]).

4) The relation between steps (P300 states) and turns
(ERD states) during the trials.

The ideal, minimal number of actions was determined for
each trial. Table I gives the mean number of actions per
trial, averaged over all participants and also the ideal, min-
imal number of actions. As could be expected, the number
of steps needed when using brain control is significantly
higher (t=6.82, p<0.001) than the ideal number. However,
classification of EEG data in a BMI is never perfect. In
our evaluation study with the hybrid BMI, we reported an
overall state detection error rate of 0.23. We did not record
the ground truth during the sessions, because this would have
required that the user reports his intention after every state
detection by the system, which would have disturbed the
flow of the experiment. As a first approximation, the state
detection error rate is considered to be the measure for the
expected performance of the system in terms of classification
error. Thus, we consider 23% of all actions to be caused
purely by state detection errors of the system and not by
the user’s intent. Given the mean number of 66.68 actions
for all trials, 51.34 actions remain. This number is 1.7 times
higher than the ideal number of actions (30). However, given
the complexity of the setting with a physical, almost human
sized robot which has to be navigated in a real environment,
this number is satisfying. None of the participants have had
experience with Honda’s Humanoid Research Robot before.
In addition, a BMI is a totally novel type of interface for
human-machine interaction for the participants.

Interestingly, one participant accomplished the whole ses-
sion without a single turn (ERD state). He navigated the
robot purely by stepping. All other participants used a
combination of stepping and turning to move the robot
towards the target, which leads to more natural trajectories.
The number of actions differs between 55 for the best and 91
for the worst performing participant. The standard deviation
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Fig. 3: The bar chart shows the action number for each
participant and each trial. The characters in the legend
indicate the subject codes.

TABLE I: The table gives the mean action numbers (aver-
aged over all participants) needed to reach each item. For
comparison, the minimal numbers of actions are also given.

BMI control Perfect control

Trial All Steps (P300)  Turns(MI) | All | Steps  Turns

1 15,67 10,17 5,50 5 4 1

2 9,17 7,00 2,17 5 4 1

3 12,50 7,67 4,83 7 3 4

4 11,67 6,67 5,00 6 3 3

5 17,67 9,00 8,67 7 3 4
All 66.68 40.51 26.17 30 17 13

between subjects is 0=12.01, indicating that all participants
were able to accomplish the given task in a comparable
fashion. Fig. 3 gives the detailed numbers of actions that
each individual participant needed during each trial.

Some participants seemed to have difficulties with per-
forming ERD in this complex setting. This assumption arises
from a visual analysis of the session (video recordings were
made during all sessions). During some trials, a participant
tried to turn the robot towards the target, but the robot
turned the other way round. This behavior is not consistent
with the expected error rates for the state detection, which
should be around 0.3 for the ERD part alone. Therefore,
we presume that the difficult task has an influence on the
ability of the users to reliably produce ERD patterns when
they intend to. In contrast to this, the P300 pattern appears to
be unaffected by the complexity of the control task. Indeed,
these observations are in-line with the neuro-physiological
mechanism of both patterns. On the one hand, the automatic,
stimulus driven P300 potential does not demand much addi-
tional cognitive load and hence saves the cognitive resources
needed to deal with the complex robot control task. On the
other hand, the learned, volitional production of ERD pattern
requires the allocation of additional resources, which might
be difficult if the task as such is complex. However, it should
be possible to attenuate this issue by more user training for
ERD, in particular while using increasingly complex control
or feedback settings.

VI. CONCLUSION

We implemented an advanced approach towards a sophisti-
cated assistive system, providing a state-of-the-art humanoid
robot with elaborated capabilities that can act as a personal

assistant for severely handicapped people. We developed a
complex, multi-functional hybrid brain-robot interface that
provides a communication channel between the human and
the robot, such that its (otherwise autonomous) actions or be-
haviors may be manipulated by the human user if necessary.
We conducted an empirical study with Honda’s Humanoid
Research Robot in our robotics lab where we employed an
every-day task, shopping, to show the functionality of the
overall system. All participants were able to reach a satisfac-
tory degree of control with the hybrid brain interface and to
successfully accomplish the given task. Furthermore, all but
one participant fully exploited the hybrid nature of the system
by switching between the P300 and ERD pattern when
needed. To transfer this system from the lab into the real
world, it is necessary to combine the current implementation
of the system with additional functions, like dynamic scene
perception, object recognition and path planning. Advanced
methods are already available for these functions. In the near
future, humanoid robots can, thanks to their embodiment,
act as personal assistants for motor impaired people. The
robotic assistants can execute motor tasks that these people
are no longer able to perform themselves. This will help
them to retain more autonomy about their own actions and
live a more independent life which, consequently, can largely
improve their overall quality of life.
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