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Abstract— We investigated the possibility of creating a tem-
poral representation of brain activity from fNIRS signals. In
an experiment, subjects performed isometric arm movements
in four directions, and fNIRS signals were measured over the
primary motor area in the left hemisphere of their brain.
We estimated the direction of the arm force from the fNIRS
signals by using two classifiers: sparse linear regression (SLR)
and support vector machine(SVM). Classification accuracy was
approximately 70% with SLR. The temporal distribution of the
features selected with SLR was the same as those selected with
SVM. The results indicated that the fNIRS signals possibly
included information about arm force direction in 4–6 [s] after
stimulus onset and offset.

I. INTRODUCTION

Brain-machine interface (BMI) has been actively studied
in recent years, which enables external devices to be directly
controlled by brain activity. Assessment of analysis of the
underlying brain activity related to specific movements is
important for controlling a BMI in a realistic way. Previous
studies on brain function have shown that, when a visual
stimulation or movement was presented to a subject, it was
possible to estimate from brain activity by using pattern clas-
sification and decoding [1] [2]. Thus, a BMI is a promising
communication tool for a person who lost body function due
to trouble or disease such as amyotrophic lateral sclerosis.

Noninvasive neuroimaging techniques include electroen-
cephalography (EEG), functional magnetic resonance imag-
ing (fMRI), and functional near infrared spectroscopy
(fNIRS). fNIRS measures the oxygenated hemoglobin
(Oxyhb) and deoxygenated hemoglobin (Deoxyhb) concen-
trations in the brain surface blood flows, which may be
associated with brain activity [3]. Unlike EEG, fNIRS is
robust against electrical artifacts. Additionally, the fNIRS
system is simple compared with the fMRI one. It is thus
advantageous for measuring brain activity when the subject
is moving.

Sparse logistic regression (SLR) has been getting much
attention in various fields. It has been applied to image
discrimination from fMRI signals [4] and estimation of finger
pinch force from fNIRS signals [5]. SLR is a Bayesian
extension of logistic regression, and simultaneously performs
feature selection and training of the model parameters. In an
experiment measuring brain activity, the obtained features
were too numerous compared with the number of samples.
Therefore, feature selection is necessary to prevent over-
fitting. This feature selection can be done simultaneously
with training by using SLR that enables to estimate brain
information to be interpreted from selected features.
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Fig. 1. Arm angle Fig. 2. Experimental setup
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Fig. 3. Visual force feedback
Fig. 4. Probe and channel
positions on left hemisphere

A previous study showed that it might be possible to esti-
mate the arm force direction from fNIRS signals [6]. Another
study showed that a spatial representation of information
about body movement may be contained in fNIRS signals
through channel selection using support vector machine
(SVM) [7]. Spatial representation was sufficiently elucidated
by result of it. Whereas, temporal representation was not.
The number of combinations became too large when trying
to create a temporal representation by using a time window
search with SVM. Thus, this method is not practical because
of requirement of much computational cost and time.

In this study, we created a temporal representation by
using SLR. This method has less computational cost than a
time window search with SVM. In particular, we estimated
the direction of arm force with SLR from fNIRS signals
that were measured during isometric arm movements in four
directions, in the same way as with the previous studies. We
were able to create a temporal representation of the force
direction derived from fNIRS signals by using the temporal
distribution of selected features.

II. EXPERIMENTAL METHODS

This study was approved by the ethics board of the Na-
gaoka University of Technology. Eleven healthy men (S1 to
S11) assented to and participated in the experiment. S2 was
left-handed, and the others were right-handed. All performed
the task with their right hand.
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Fig. 5. Experimental task procedure

The task involved a right-hand isometric muscle con-
traction at 15 [N] with the force directed in one of four
directions: forward (F), right (R), backward (B), left (L) (Fig.
1).

The subject sat in front of a display with his body strapped
to the chair using a belt as shown in Fig. 2. The heights of
the chair and armrest were set so that the right arm was
parallel to the upper surface of the desk. A force sensor was
set at the hand position when the angle of the right arm was
105◦ as shown in Fig. 1.

Fig. 3 shows the visual feedback displayed on the screen.
The small circle at the center represented the cursor, which
moved in response to input signals from the force sensor.
The cursor was blue when the force was less than 14 [N],
yellow when 14 to 16 [N], and red when more than 16 [N].
The feedback view was placed at the center of the subject’s
visual field to avoid eye movement. The distance from the
subject’s eyes to the display was set to 95 [cm]. The cursor
diameter was 1.5 [cm]. The 15 [N] circle diameter was 25
[cm].

Since the contralateral hemisphere of arm movement is
activated, the fNIRS signals were measured over the left
hemisphere because the subjects performed the task with
their right arm. The fNIRS probes and channels were located
around C3 of the international 10-20 system as shown in Fig.
4. The fNIRS signals were measured for a sampling period
of 130 [ms]. In the initial experiment, 5544 data points were
measured for each trial, and 4824 points were measured in
the additional experiment.

Six subjects (S1 to S6) participated in the initial exper-
iment, and the other five (S7 to S11) participated in an
additional experiment, which differed from the initial one in
terms of the timing. The subjects performed the experiment
over the course of five days.

Fig. 5 shows the experimental procedure. In the initial
experiment, a session consisted of four blocks corresponding
to the four directions. Each block consisted of five trials. A
trial consisted of an 8-[s] pre-rest, a 12-[s] task, and a 10-
[s] post-rest. A dataset for 50 trials was obtained for each
direction. To prevent inter-trial interference, a 30–60 [s] rest
was given between trials, and the next measurement started
after stabilization of the fNIRS signals. In the additional
experiment, a trial consisted of an 8-[s] pre-rest, an 8-[s]
task, and a 10-[s] post-rest. The compositions of the blocks
and sessions were the same as in the initial experiment.

TABLE I

NUMBER OF USABLE TRIALS

Subject F B R L

1 34 48 38 23
2 33 28 25 29
3 41 44 19 33
4 50 50 50 50
5 47 50 47 50
6 50 50 50 50
7 48 44 48 46
8 50 32 19 33
9 50 50 50 49

10 50 50 50 50
11 49 47 49 38

III. ANALYSIS

A. Pre-processing

We set the start time (0 [s]) with the time when the force
reached 3 [N] and set the end time when it fell below 3 [N] in
order to exclude differences in the start time between trials.
All data sets for each subject were evaluated by multiple
comparison of the force values. Data sets in which values
were significantly different from the average were not used
in the analysis. The force data used for the comparisons
were the average value from start to end of movement. The
multiple comparison was performed using the Tukey-Kramer
method with the significance level set to 1%. TABLE I shows
the number of trials used in the analysis.

The mean value during pre-rest was used as a baseline,
which was subtracted from the original signal. To remove
noise, a fourth-order Butterworth low-pass filter (0.5 [Hz])
was used.

B. Classification

SLR and SVM were used to estimate arm force direction.
Estimations for three groups were performed: FB-RL which
classify FBRL data into FB class and RL class, F-B which
classify FB data into F class and B class, and R-L which
classify RL data into R class and L class. This method
required fewest classifier when classify four direction data
into four class.

1) Sparse Linear Regression: In the SLR model, the linear
discriminant function separating two classes was represented
by the weighted sum of each feature value:

f(x; θ) =
D∑

d=1

xdθd, (1)

where x = (x1, ..., xD)t is the input feature vector and θ =
(θ1, ..., θD)t is the weight vector. The possibility that the
input vector belongs to class C is given by

p =
1

1 + exp(−f(x; θ))
≡ P (C|x). (2)

Given N input-output data samples, the likelihood function
is expressed as

P (y1, ..., yN |x1, ..., xN ;θ) =
N∏

n=1

pyn
n (1− p)1−yn , (3)
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where yn is a variable such that y = 0 if the sample belongs
to class1 and y = 1 otherwise. The θ that maximizes the
likelihood is calculated in two steps.

θstep :

E(θ) =
N∑

n=1

{
ynθtxn − log(exp(θtxn))

}− 1
2
θtĀθ (4)

αstep :

ᾱd =
1− ᾱds

2
d

θ̄d
2 (5)

The α is referred to as the relevance parameter. It controls
the possible range of the corresponding weight parameter.
Most of the estimated αd diverges to infinity, and the
corresponding weights become zero through iteration of the
two steps above. As a result, most of the features eliminated,
and we obtained a sparse model.

2) Support Vector Machine: In the SVM model, the
discriminant function is

f(x) = sgn

(
l∑

i=1

yiα
∗
i K(x,xi) + b∗

)
, (6)

where xi are the training data sets, yi are the desired outputs,
and K is the kernel function. The α∗i are defined using a
quadratic programming problem.

max. W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjK(xi,xj)

sub. to 0 ≤ αi ≤ C, i = 1, ..., �, (7)
�∑

i=1

αiyi = 0

C is an appropriate positive penalty parameter. The threshold
level b∗ is given by

b∗ =
1
|I|
∑
i∈I

(
yi −

�∑
j=1

yjα
∗
jK(xi,xj)

)
. (8)

Here, I is the set of support vectors. Sequential minimal
optimization (SMO) was used to solve this problem. The
linear kernel function was

K(x1,x2) = xT
1 x2. (9)

C. Data analysis and evaluation

The input dataset excluded trials in which the force value
was significantly different from the average. Additionally, the
measurement time for each trial data point was set from the
start to 6 [s] after finishing the movement, resulting in 18-[s]
long (14-[s] long in additional experiment). All models were
evaluated using five-fold cross validation. All trials were
sorted with random order and separated into five blocks. Four
blocks were used for learning to obtain the parameters. Eval-
uation was performed using another block and the obtained
parameters. The learning and evaluation were performed for
all combinations. It was repeated eight times, while blocks
were rearranged in each trial. The classification accuracy was
the average for 40 times evaluations.

TABLE II

CLASSIFICATION ACCURACY WITH SLR

Subject FB-RL [%] F-B [%] R-L [%]

1 78.76 64.52 78.99
2 72.39 74.24 75.11
3 79.24 64.65 81.61
4 79.13 66.69 66.25
5 68.72 64.51 69.40
6 72.25 72.56 66.88
7 71.28 64.32 67.70
8 63.06 61.86 73.79
9 69.20 67.40 66.21
10 74.13 68.38 70.38
11 63.25 60.14 59.25

Average 71.95 66.30 70.51
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Fig. 6. Classification accuracy with SVM. Bar graphs represented classi-
fication accuracy. The circles represented the number of input feature. The
triangle represented the number of input feature with feature selection.

IV. RESULTS

TABLE II shows the classification accuracy with SLR. The
classification accuracy was approximately 72% for FB-RL,
66% for F-B, and 70% for R-L at average of all subjects.

Fig. 6 shows the classification accuracy and number of
input features with SVM, without and with feature selection
with SLR. Bar graph represented classification accuracy and
The circles and triangles represented the number of input
feature. Feature selection with SLR selected more than four
times out of 40 estimations were used. As a result, SVMs
with and without feature selection were similar in the clas-
sification accuracy. However, the number of input features
decreased to approximately half when feature selection was
used. Since feature selection with SLR reduced the number
of input features, these results suggested that the features
selected with SLR are thought to have included information
about the force direction.

Fig. 7 shows the temporal distribution of the number of
features selected with SLR. The horizontal axis represents
time, and the vertical axis represents the number. Count rep-
resents the number of times where the channels were selected
in 40 times of learning. In FB-RL and R-L classification,
the features that appeared at 4 to 6 after the start and end
times were frequently selected, indicating that the features
selected with SLR probably reflected brain activity and that
information was comprised in this term. The difference of
fNIRS signals appeared at wide time but all of them not
necessarily included information. In our previous study, the
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(a) FB-RL classification (b) F-B classification (c) R-L classification

Fig. 7. Temporal distribution of number of selected features

Fig. 8. Result of temporal feature selection using SVM

difference of fNIRS signals appeared at nearly all channels
while the number of channels which available to estimation
was approximately 10 out of 24 channels.

In F-B classification, the features that appeared soon
after the start were frequently selected. These features were
thought to reflected motion planning process.

To test temporal local existence, a time window search was
performed using SVM, and the results were compared with
those with SLR. Two windows with variable widths and start
times were used in the time window search. The widths were
1–17 [s] and slid in steps of each 1 [s] between 0–(18-width)
[s]. Fig. ?? shows the results of the time window search along
with example plots of fNIRS signals. The horizontal axis
represented time, the left vertical axis represented variation
in the fNIRS signal, and the right vertical axis represented
the number of selected features. The histograms represented
the number selected with SLR. The shaded areas showed the
results of the time window search with SVM. The results
were a little different from the temporal distribution of
features selected with SLR, but similar terms were selected:
those that appeared at four to six seconds later of the start
and end times. These terms thus had a high probability of
including information about the arm force direction because
similar terms were selected with SVM and SLR.

V. CONCLUSION

We investigated the temporal representation of arm force
direction through the estimation of the force direction from

fNIRS signals using SLR. Accuracy was approximately 72%
for FB-RL classification, 66% for F-B classification, and
70% for R-L classification. SVMs with and without feature
selection were similar in the classification accuracy. How-
ever, the number of input features became approximately
half by feature selection. Thus, features selected with SLR
included brain information concerning arm movements be-
cause the number of input feature decreased but classification
accuracy was same as before. The selected features were
similar with those using a time window search with SVM.
Thus, those features probably included information about the
arm force direction.
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