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Abstract—Recent debate about neural mechanisms for 

stabilizing human upright quiet stance focuses on whether the 

active and time delay neural feedback control generating muscle 

torque is continuous or intermittent. A single inverted pendulum 

controlled by the active torque actuating the ankle joint has 

often been used for the debate on the presumption of well-known 

ankle strategy hypothesis claiming that the upright quiet stance 

can be stabilized mostly by the ankle torque. However, detailed 

measurements are showing that the hip joint angle exhibits 

amount of fluctuations comparable with the ankle joint angle 

during natural postural sway. Here we analyze a double inverted 

pendulum model during human quiet stance to demonstrate that 

the conventional proportional and derivative delay feedback 

control, i.e., the continuous delay PD control with gains in the 

physiologically plausible range is far from adequate as the 

neural mechanism for stabilizing human upright quiet stance. 

I. INTRODUCTION 

PRIGHT posture during human quiet stance is 

mechanically unstable due to a high position of the total 

center of mass (CoMtotal) of the human body, represented as a 

system of multi-link rigid bodies. It has been suggested that 

quiet stance is controlled and stabilized mostly by the ankle 

joint torque [1], a mechanism which is known as ankle 

strategy of postural control. Since the passive stiffness of the 

ankle joint, arising from mechanical viscoelasticity of the 

ankle joint, is smaller than the rate of growth of the 

gravitational toppling torque [2], [3], active torque generated 

by neural feedback control is required for stabilizing the 

upright posture, a necessary neural mechanism, unfortunately 

affected by a significant neural feedback transmission delay. 

Those classical observations have been supporting, for a long 

time, mathematical modeling of human quiet stance with a 

single-link inverted pendulum that is actuated by the passive 

as well as the active torques at the ankle joint.  

The recent debate about neural stabilization of human 

upright quiet stance focuses on whether the active, delayed 

neural feedback control generating muscle torque is 

continuous or intermittent [4]-[6]. The inverted single 

pendulum model controlled by the active torque at the ankle 
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joint has often been used for the debate. However, detailed 

measurements are showing that the hip joint angle exhibits 

amount of fluctuations comparable with the ankle joint angle 

during natural postural sway [7], [8], suggesting that the 

dynamics of the standing posture could not be accurately 

captured by the single inverted pendulum model. For example, 

the angular displacement at the hip is significantly greater than 

the angular displacement at the ankle, confirming that hip joint 

motion cannot be ignored [7]. Moreover, hip joint rotations 

might support the postural system in minimizing the 

acceleration of the CoMtotal [8]. Since the ankle joint torque as 

well as the stiffness of the ankle joint required for stabilizing 

the quiet stance can be different in the two biomechanical 

models (single-link vs. multi-link inverted pendulum model) 

[9], the analysis of the multi-link inverted pendulum model in 

the human quiet stance is crucial for characterizing in a correct 

way both control strategies, i.e., continuous or intermittent 

control hypotheses.  

Here we construct a double inverted pendulum model 

during quiet stance in the sagittal plane. Two joints of the 

model correspond to the ankle and hip. For each joint, we 

assume that the active torque is generated by a continuous and 

time delayed proportional and derivative (PD) feedback 

controller as in the conventional stiffness control model of the 

upright stance [10], [11]. In the single inverted pendulum 

model, the upright posture can easily be destabilized if the 

derivative gain of the PD control is small when we assume that 

the proportional gain of the PD control is large enough to 

supplement the insufficient passive stiffness of the ankle, 

known as delay-induced instability [4], [6]. Thus, models with 

the stiffness control hypothesis [11] usually assume a large 

derivative gain to avoid delay-induced instability, as well as a 

large proportional gain, which might be physiologically 

implausible [12]. In this study, we analyze the double inverted 

pendulum model during human quiet stance to demonstrate 

that the conventional PD delay feedback control, with the 

gains in the physiologically plausible range, is far from 

adequate as the neural mechanism for stabilizing human 

upright quiet stance. 

II. MODELS AND METHODS 

The double inverted pendulum model during quiet standing 

in the sagittal plane is shown in Fig. 1a. The upper and lower 

links of the model correspond to the following segments: 

head-arm-trunk (LinkHAT) and leg (LinkL), respectively. The 

distal end of LinkL is fixed in the space by a pin joint (Jointa), 
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which corresponds to the ankle joint. The proximal end of 

LinkL and the distal end of LinkHAT are also connected by a pin 

joint (Jointh), which corresponds to the hip joint. The joint 

angles and parameters of the link masses, lengths, and the 

distances from the joint to CoM of each link are defined as in 

Fig. 1a. The parameter values in Table I are for an adult with 

1.7 m of height and 60 kg of weight, using the segment ratio as 

used in the previous study [13]. In Fig. 1b, m represents the 

total mass of the double pendulum, and h the distance from 

Jointa to CoMtotal of the double pendulum when Jointh is fully 

extended. The block diagram in Fig. 1c represents the 

neuro-musculo-skeletal system for the inverted double 

pendulum model that assumes the conventional continuous 

feedback controller. Motion equation of the double inverted 

pendulum model is described as; 

 Mθ Gθ Q  

where θ is the joint angle vector, M the inertia matrix, Gθ the 

gravitational torque vector, and Q the joint torque vector. 

Because the tilt angles and angular velocities during quiet 

stance are small, we approximate as sinθa≈θa, cosθa≈1, 

sinθh≈θh, cosθh≈1, and O(ω
2
)≈0 with ω being the angular 

velocity. Terms of the centrifugal force and Coriolis force 

vanish by this linearization. The joint torque vector depends 

on how we model the passive and the active torques. 

A. Stability Analysis of the Model without Active Torque 

We first consider the double inverted pendulum model 

whose joints are actuated only by the passive torque. The 

passive joint torque vector is modeled as follows. 
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where Ka, Ba, Kh, and Bh are the passive elastic coefficient and 

viscosity coefficient of the ankle joint and those of the hip 

joint, respectively. Motion equation of the model is described 

by the following linear ordinary differential equation. 
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The eigenvalues of Apassive determine the stability of the model, 

which can be obtained as the solutions λ of 

passive 0  I A  

where I is the 4×4 identity matrix. Stability of the upright 

posture depends on the four parameters (Ka, Ba, Kh, Bh). For a 

given set of values of these parameters, the system is stable if 

the real parts of all eigenvalues are negative. Otherwise the 

system is unstable, meaning that the upright posture of the 

model without active feedback torque cannot be stabilized. 

Here we fix both Ba and Bh at 4 Nms/rad. For a variety of 

values of Ka and Kh, we calculate solutions of (3) to show how 

the stability of the model depends on the values of Ka and Kh. 

B. Stability Analysis of the Model with Active Torque 

 We consider the double inverted pendulum model whose 

joints are actuated by the passive torque as well as the active 

torque generated by the continuous time delay PD feedback 

controllers. In this case, the joint torque vector is defined as 

follows. 
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where Pa, Da, Ph, and Dh are the proportional and derivative 

gains of the active feedback control for the ankle joint and 

those for the hip joint, respectively. The subscript Δ is the time 

delay due to the neural transmission time, i.e., θΔ=θ(t-Δ), 

ωΔ=ω(t-Δ). (See Fig. 1c). In this study, Δ is set to 0.1 s. Then, 

motion equation of the model in this case becomes the 

following delay differential equation:  
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By substituting a solution of (4) with the form of (θa(t), θh(t), 

ωa(t), ωh(t))=e
λt
(θa([0,-Δ]), θa([0,-Δ]), ωa([0, -Δ]), ωh([0, -Δ])) 

into (4), we obtain the following equality. 

 

TABLE I 

PARAMETERS OF DOUBLE INVERTED PENDULUM MODEL 

Symbol Description Values 

mL Segment mass of LinkL 60 × 0.35 kg 

lL Length of LinkL 1.70 × 0.51 m 

hL Distance from distal end to center of 

mass of LinkL 

1.70 × 0.255 m 

mHAT Segment mass of LinkHAT
 60 × 0.62 kg 

lHAT Length of LinkHAT 1.70 × 0.45 m 

hHAT Distance from distal end to center of 

mass of LinkHAT 

1.70 × 0.225 m 

a Rotation angle of Jointa    ---   rad 

h Rotation angle of Jointh    ---   rad 

a Angular velocity of Jointa    ---   rad/sec 

h 



Angular velocity of Jointh 

Delay in the feedback loop 

   ---   rad/sec 

0.1 sec 

 

(1) 

(2) 

(3) 

(4) 

 
Fig. 1.  A double inverted pendulum model during quiet standing. (a) The upper and lower links of the 

model correspond to the head-arm-trunk and the lower extremity, respectively. Distal end of the lower 

link corresponds to the ankle joint. Joint between the lower and upper links corresponds to the hip joint. 

(b) m: total mass of double pendulum. h: distance from the ankle joint to the total center of mass of the 

double pendulum with fully extended hip joint. (c) Block diagram of neuro-musculo-skeletal system 

model with a neural feedback transmission delay Δ in the feedback path. θref =(0,0) in this study. 
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The solution λ which satisfies this relationship, except a trivial 

solution with zero initial value, can be calculated from the 

following transcendental equation. 

passive active 0e     I A A  

Equation (5) includes quadratic terms of λ and exponential 

functions of λ, implying that there is an infinite number of 

solutions. We look at four dominant eigenvalues to determine 

the stability of the model. Dynamics of the model with the 

active feedback torque is characterized by the eight 

parameters (Ka, Ba, Kh, Bh, Pa, Da, Ph, Dh). Here we set Ka as 

0.8mgh, Ba as 4 Nms/rad, and Pa as 0.4mgh. A set of (Kh, Bh) is 

set to either (0.6mgh, 4) or (1.0mgh, 10). The following values 

of Da and Dh are examined; 10 Nms/rad, 30 Nms/rad, and 50 

Nms/rad for Da, and 5 Nms/rad, 10 Nms/rad, and 20 Nms/rad 

for Dh. There are eighteen combinations of the parameter 

values for (Kh, Bh, Da, Dh). We calculate root locus diagrams 

of the model as a function of the parameter Ph[0.2mgh, 

1.0mgh] for each set of (Kh, Bh, Da, Dh), by which we obtain 

four root loci for the four dominant eigenvalues. If all of four 

roots for a value of Ph have negative real parts, upright posture 

of the model under active torque with that set of the parameter 

values can be stabilized. If any roots is in the right-half plane, 

the model cannot be stabilized by the active control. 

III. RESULTS 

A. Stability of the Model without Active Torque 

Stability of the model without the active feedback torque in 

the Ka-Kh plane, where Ka[0, 2.0mgh] and Kh[0, 1.0mgh] 

with Ba and Bh being fixed at 4 Nms/rad, is shown in Fig. 2. 

Pair of values of the Ka, Kh parameters that fall in the red 

region correspond to conditions of instability. The blue region 

is an area of stability. Note that a critical elastic coefficient 

altering the stability for the equivalent single inverted 

pendulum, whose mass is m and distance from the ankle joint 

to CoMtotal is h, is 1.0mgh. Fig. 2 shows that Ka should be 

larger than 1.0mgh for the stability of the upright posture of 

the double inverted pendulum. Moreover, when Kh is small, 

even if Ka is large, the upright posture of the double inverted 

pendulum cannot be stabilized. 

B. Stability of the Model with Active Torque 

The root locus diagrams (RL) as a functions of Ph for the 

model with the active feedback torque are shown in Fig. 3, in 

which Ka, Ba and Pa are fixed at 0.8mgh, 4 Nms/rad, and 

0.4mgh, respectively. RL has four branches: two branches, 

referred to as RLin, are close to the origin and packed in a 

small region; the other two branches, referred to as RLanti, are 

relatively far from the origin and span a longer range. Blue 

curves in Fig. 3 represent RLanti for the model with (Kh, 

Bh)=(0.6mgh, 4); in the case of  red curves (Kh, Bh)=(1.0mgh, 

10). White and black circles on each branch correspond, 

respectively, to Ph=0.2mgh and Ph=1.0mgh.  

 When (Kh, Bh)=(0.6mgh, 4), for all three values of Dh, the 

blue RLanti stays in the right half-plane for any values of 

Ph[0.2mgh, 1.0mgh], meaning that the equilibrium point of 

the model is unstable regardless of the values of Ph. For (Kh, 

Bh)=(1.0mgh, 10), when Dh=10 Nms/rad and 20 Nms/rad, the 

model is unstable for any value of Ph as shown by the red 

RLanti in the center and right columns of Fig. 3. Figure 4 shows 

magnifications of three panels in Fig. 3 left-column around 

their origin when Dh=5 Nms/rad. In this case, when Da=10 

Nms/rad, RLin stays in the right half-plane, meaning that the 

model is unstable. When Da=30 and 50 Nms/rad, RLin stays in 

the left half-plane. When Da=30 Nms/rad, two roots on the 

RLanti branch cross the imaginary axis at Ph=0.24821mgh. 

When Da=50 Nms/rad, two roots on the RLanti cross the 

imaginary axis at Ph=0.20385mgh. Thus, the upright posture 

of the model with (Kh, Bh)=(1.0mgh, 10) is stable if Ph is 

between 0.2mgh and 0.24821mgh for Da=30 Nms/rad, and if 

Ph is between 0.2mgh and 0.20385mgh for Da=50 Nms/rad. 

IV. DISCUSSION 

In this study, we construct a double inverted pendulum 

model during human quiet stance, and analyze the stability of 

the model with and without active, time delay, and continuous 

neural feedback control. The results of the study show that the 

model without active torque can be stable only if the 

viscoelasticity of each of two joints is very large, which might 

be far from the physiological range. The model with the active 

torque can be stabilized if the eight parameter values of the 

ankle and hip joint torques, i.e., Ka, Ba, Kh, Bh, Pa, Da, Ph, and 

Dh, are set appropriately. However, the ranges of the 

parameter values that can stabilize the upright posture of the 

model with the active torque are quite limited, meaning that 

the continuous and time-delay PD feedback control cannot 

stabilize the double inverted pendulum in a robust manner.  

Throughout this study, we assume Ka=0.8mgh, Ba=4 

Nms/rad, and Pa=0.4mgh. For the model with the active 

feedback torque, the upright posture with the following sets of 

the parameter values is stable: Case (A) Kh=1.0mgh, Bh=10 

Nms/rad, Da=30 Nms/rad, Ph[0.2mgh, 0.24821mgh], Dh=5 

Nms/rad. Case (B) Kh=1.0mgh, Bh=10 Nms/rad, Da=50 

Nms/rad, Ph[0.2mgh, 0.20385mgh], Dh=5 Nms/rad. 

 
Fig. 2.  Stability region of the double inverted pendulum model without 

the active feedback torque in the (Ka, Kh) plane. Values of both Ba and 

Bh are fixed at 4 Nms/rad. If a set of value of (Ka, Kh) is located in the 

red region, the upright posture of the model without the active torque is 

unstable. If it is in the blue region, the upright posture of the model 

without the active torque is stable. 

(5) 
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Comparing Case (A) with Case (B), we see that the stability 

range of Ph decreases as the value of Da increases unlike the 

case of the single inverted pendulum. Indeed, the model with 

Da larger than 50 Nms/rad cannot be stabilized by the active 

feedback torque. This means that the upper value of Da that 

can stabilize the upright posture is also limited. 

Let us discuss how the double pendulum with the active 

feedback control behaves in detail. It can be confirmed that θa 

and θh coordinates of the eigenvector for the pair of complex 

roots on the RLin branch have always the same sign. Moreover, 

θa and θh coordinates of the eigenvector for the pair of 

complex roots on RLanti branch have opposite signs. Thus, the 

transient oscillation mode of the double pendulum associated 

with the roots on the RLin branch represents the motion in 

which LinkL and LinkHAT moves together, i.e., with an 

in-phase relationship. The other oscillation mode associated 

with the roots on the RLanti branch represents the motion in 

which LinkL and LinkHAT moves in opposite direction, i.e., 

with an anti-phase oscillation. In experimental observations of 

postural sway, the in-phase and the anti-phase motions may be 

considered roughly as the sway around the ankle joint and the 

hip joint, respectively. In both cases, the imaginary part of the 

pair of complex roots represents the oscillation frequency. 

The oscillation frequency of anti-phase mode in the model is 

about 6 Hz, which is much faster than 1.45 Hz for the hip joint 

fluctuations reported in the previous experimental study [14]. 

Comparison between the imaginary part of the pair of the 

complex roots for the model with (Kh, Bh)=(0.6mgh, 4) and 

that with (Kh, Bh)=(1.0mgh, 10) shows that the oscillation 

frequency decreases as the passive viscoelasticity of the hip 

joint decreases. This means that the passive viscoelasticity of 

the hip joint should be much lower than the values that we 

used in this study, if we assume the continuous active PD 

feedback control as the neural mechanism. If, however, the 

passive viscoelasticity of the hip joint is much lower than the 

values used in this study, the upright posture of the model 

cannot be stabilized for any proportional and derivative gains 

of the active and continuous feedback controller, suggesting 

that the continuous PD feedback might not be the neural 

mechanism that the human central nervous system employs 

for the postural control.  
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Fig. 3.  Root locus diagrams as a function of the proportional gain of hip joint Ph ([0.2 mgh, 1.0 mgh]) of the active feedback. For each, the passive ankle 

stiffness, viscosity, and proportional gain of the active feedback torque at ankle joint are constant; Ka=0.8mgh, Ba=4, Pa=0.4mgh. Blue curves are the root 

locus for (Kh, Bh)=(0.6mgh, 4).  Red curves are the root locus for (Kh, Bh)=(1.0mgh, 10). ○ indicates Ph=0.2mgh, and ● indicates Ph=1.0mgh.  

 
Fig. 4.  The three panels are magnifications of parts of root loci in Fig. 3 

near the origin for Dh=5 (three panels in Fig. 3-left column). 
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