
 

 

 

 

  

Abstract— The aim of this work is to propose an 

improvement to the double threshold algorithm for muscular 

activation intervals estimation developed by Bonato and his co-

workers. The proposed method has been designed in order to 

be adaptive also when the Signal to Noise ratio (SNR) of the 

sEMG signal changes during the trial, by re-evaluating the 

parameters of the algorithm according to the estimated local 

SNR and the desired detection and false alarm probabilities. 

This novel implementation is also suitable for working in 

pseudo real-time since it can give information on burst 

estimation shortly after the end of the current muscular 

activity. The proposed method was tested on simulated signals 

taking into account changes in the SNR during the trial, and 

results were compared with those obtained with the classical 

implementation of the algorithm.   

I. INTRODUCTION 

MONG the information that can be obtained from the 

surface electromyographic signal (sEMG), onset-offset 

timing estimation has been widely investigated in literature 

in the past two decades. Estimation of sEMG activation 

timing has been proven to give valuable information both in 

clinical studies and in other applications: it has demonstrated 

its usefulness in orthopedics [1][2][3], in the estimation of 

muscular synergies [4] and in the study and rehabilitation of 

impairments such as cerebral palsy and paresis [5] [6]. In 

addition, many sEMG-driven devices and technologies have 

been developed in the past years, such as rehabilitative 

orthoses [7], exoskeletons [8] and prostheses [9]. In early 

studies, estimation of sEMG onset and offset was performed 

by trained clinicians by means of visual inspection, while, 

more recently, attention has been focused on the 

development of automatic computer-based methods. Many 

algorithms have been developed so far, starting from simple 

single threshold methods, as in [10], to the double threshold 

statistical algorithm for muscle activation detection proposed 

by Bonato and co-workers [11]. Other approaches are based 

either on time-frequency analysis of the sEMG signal 

[12][13] or on statistically optimal decision criteria [14][15]. 

A common limitation of these methods is the reduced ability 

to accurately detect timings in those conditions where the 
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SNR of the sEMG signal changes during a trial. SNR 

fluctuations during sEMG recordings are commonly due to 

changes in the signal power (e.g. changes in the exerted 

force during isometric trials) or changes in the noise power 

(e.g. changes in the electrode distance from the muscle, 

changes in the ground reference level). The second 

phenomenon in particular can distort the onset-offset 

estimation of sEMG signal and thus can compromise the 

validity of an acquisition trial. 

In this work a novel implementation of the algorithm 

proposed by Bonato et al. [11] is presented, in order to 

overcome estimation errors caused by SNR changes during 

trials. This implementation is able to adapt, on a burst-to-

burst basis, the parameters depending on the desired values 

of false alarm probability (Pfa) and detection probability 

(Pd), chosen by the user, and on the estimated SNR. 

Moreover, the implementation of this modified version of 

the algorithm leads to a pseudo real-time detection (the 

onset-offset timing of a sEMG burst is provided shortly after 

the completion of the burst itself), while the original method 

was intended as an offline procedure. The proposed 

algorithm has been tested and compared with its classical 

implementation on epochs of simulated data with SNR 

varying through time. 

II. MATERIALS AND METHODS 

A. Theoretical framework of the algorithm 

The detector is based on the assumption that sEMG may 

be considered as a zero-mean Gaussian process s(t) 

modulated by the muscle activity with a superimposed zero-

mean Gaussian noise n(t) [16] [17].  

According to this hypothesis, the sEMG temporal series 

{xi} is whitened by means of an adaptive white filter [18] 

(obtaining the series { xi
w
}). An auxiliary time series {zi} is 

then obtained, by summing the square of two consecutive 

samples of the whitened series.  Due to the Gaussianity of 

both the signal s(t) and the sumperimposed noise n(t), 

successive samples of the whitened series {zi} are 

independent, thus {zi} can be considered as a χ
2 

distribution 

with two degrees of freedom.  

The probability that a specific noise sample of the 

whitened series is above a threshold th can be written as a 

function of the noise variance σnw
2
 as in equation: 
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When both signal and noise are present, the probability that 

a given sample k is above the threshold th is then given by:    
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where σsw
2
 is the variance of the signal.  

The probability that r0 successive samples out of m are 

above a given thresold can be derived from the probability 

associated to a single sample considering a repetition of 

Bernoulli trials: 
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The probabilities expressed in (3) and (4) represent 

respectively the false alarm probabilty and the detection 

probability of the algorithm. 

 

B.  Standard Implementation of the detector 

In the standard implementation, the detector is based on 

the selection of the desired values for Pfa and Pd, and on the 

setting of the observation window length m and of the 

second threshold r0 made before the beginning of the 

analysis. These values are kept fixed during the trial. The 

value of Pth for the chosen parameters can thus be derived 

from (3). The value of the first threshold th can be derived 

from (1) given the noise variance σnw
2
 that can be obtained 

from the estimation of the SNR of the signal.   

A post-processing technique is applied on the output of 

the algorithm, in order to eliminate short erroneous 

transitions caused by the stochastic nature of the signal 

under analysis. These transitions represent false positive and 

false negative occurrences of limited duration. Given a 

minimum acceptable duration (that normally can be assumed 

close to 30 ms) for the voluntary sEMG activity, all the 

transitions of shorter duration are rejected. Standard 

parameters for this kind of implementation are m = 5 (10 ms 

of time resolution) and r0=1. Pfa and Pd are selected 

according to the task to be analyzed (typical standard values 

are 0.95 and 0.05).    

 

C.  Novel formulation  

In the standard implementation of the algorithm, the SNR 

estimation regards the whole signal and provides one mean 

value for the trial. Modifications of the SNR during the 

recording are not taken into account and affect the results 

because they prevent the correctness of the threshold th so 

providing erroneous onset-offset detections.    

The novel implementation of the algorithm is based on a 

preliminary estimation of the noise variance at the beginning 

of the trial, followed by an update of the SNR estimation for 

each detected burst. All the parameters of the detector 

(except the time resolution m that is kept fixed to 10 ms) are 

updated accordingly to the desired Pfa and Pd  (namely Pfad 

and Pdd) and the current SNR. Specifically:  

1) Before the beginning of the analysis the value of m,  

Pfad and Pdd are selected (standard values are m = 5, Pfad = 

0.05 and Pdd = 0.95). Also standard values are associated to 

the SNR and r0 (SNR = 12 dB and r0 = 1).     

2) A buffer (50 ms) of the original signal is whitened by 

means of an adaptive whitening filter. For every time-step 

the buffer is updated with the current sample of the original 

signal.  

3) A first-guess estimation of the noise variance is 

performed on the first 200 ms of the withened signal and the 

first threshold th is derived from equation (1). 

4) A buffer for the analysis is updated every time step  

with the current sample of the whitened sEMG signal, and  

the associated χ
2
 distribution is estimated. The buffered 

distribution is then analyzed for burst detection using the 

current parameters, and post-processed. 

5) If the analysis has correctly detected the end of a 

voluntary sEMG burst, the SNR and the associated noise 

variance values are updated, while the value of r0 and th are 

updated to the optimum values for the estimated SNR and 

noise variance by numerically solving equations (3) and (4). 

The analysis is repeated until the SNR estimation converges 

(the difference between the SNR estimations in two 

consecutive steps is less than 10
-3

).  

6) Once a burst has been correctly detected the buffer is 

reinizialized.  

In this implementation, the algorithm takes into account 

changes of the SNR during the analysis and updates the 

parameters in order to fit the optimal Pfa and Pd accordingly 

to the current SNR and the values of Pfad and Pdd. Numerical 

solution of (3) and (4) in fact gives the values of th and r0 

that maximize Pd and minimize Pfa for the current value of 

SNR. If no values of th and r0 can fit the Pfad and Pdd, the 

parameters are selected in order to minimize the false alarm 

probability with the highest possible detection probability. 

SNR is evaluated at each cycle of the burst analysis using 

the estimation of the onset-offset timing. In particular, noise 

power is the noise of the signal outside the onset-offset 

timing interval, and the power of the data in this interval is 

considered as signal power plus noise power.   

 

D.  Simulated Signals  

The performance of the proposed implementation was 

tested by using simulated sEMG data. These data were 

synthesized by using the same sEMG signal model used for 

the evaluation of the standard approach. The signal 

realizations were generated by modulating zero-mean 

Gaussian colored noise (obtained applying the Stulen-De 

Luca filter [19] to white noise series) with a modulating 

function (that can be rectangular or Gaussian), truncated on 

the basis of the desired time support for the burst.  

Additive zero-mean white Gaussian noise was added to 

the modulated signal. Trials were performed in order to take 

into account changes of the SNR through time. Changes 

were simulated both as changes in the signal power and in 

the noise power. The first situation was simulated by 
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constructing trials as a repetition of ten rectangular bursts at 

different SNR values (random SNR values in a range 

between 9 and 24 dB). These trials were labeled as Variable 

Signal (VS) trials.   

 

 
Fig. 1.  Example of the two kinds of trials used for the evaluation of the 

method: top figure shows a trial in which the power of the voluntary burst 

changes randomly; bottom figure shows a trial in which the power of the 

superimposed noise changes during the trial.  

 

The second condition was simulated by using Gaussian 

modulated bursts with different values of the time support. 

Changes in noise power were simulated by exponentially 

modulating the power of the superimposed noise in order to 

provide a SNR degradation of 15 dB during the trial (starting 

SNR was set at 25 dB). These trials were labeled as Variable 

Noise (VN) trials. An example of both kinds of signals is 

shown in Fig. 1. 

Detection results were evaluated in terms of: i) bias and 

standard deviation between estimated and real onset; ii) 

occurrence of false patterns (either false positive or missed 

detections). Results were compared with those obtained 

using the standard implementation of the algorithm. For the 

VS condition, 100 trials were used for the test. 

III. RESULTS AND DISCUSSION 

 

Results for VS trials, as presented in Table 1, show that 

the novel formulation has a lower error in the estimation of 

the onset (results are similar in the estimation of the offset) 

and a comparable number of false positive transitions 

(movements were all detected for both methods) with 

respect to the standard implementation. Nevertheless the 

results are both acceptable for clinical use (bias and standard 

deviation values below 10 ms).  

A more marked difference between the two 

implementations of the algorithm can be noticed in the VN 

trials, whose results are shown in table 2. 

 

ST   

bias ± std (ms) -5.9 ± 3.2 

FP/Dt 1% / 100% 

NV   

bias ± std (ms) 0.1 ± 1.6  

FP/Dt 1% / 100% 

 

Table 1. Comparison of results between the standard (ST) and the novel 

(NV) formulation of the algorithm for VS trials. Results are presented for 

different time supports and are expressed in terms of bias ± standard 

deviation, false pattern percentage (with respect of the total number of 

movements) and detection percentage.    

 

Performance was evaluated for Gaussian modulated bursts 

with different values of time support ±ασ  (with σ  being the 

standard deviation of the Gaussian function and α a 

multiplicative constant). It can be noticed that, in all the 

configurations, the standard implementation has a detection 

performance around 50% only, and detected bursts show a 

higher error in terms of bias and standard deviation. On the 

other hand the novel formulation (an example is shown in 

Fig. 2) has a 100% detection performance and a minimum 

percentage of false positive transitions with respect to the 

standard implementation. The main reason for this marked 

difference in results is related to the fact that the standard 

implementation of the algorithm estimates a fixed level of 

noise power for all the trials, while the novel formulation 

updates the estimation of the noise power and the optimal 

parameters for the detection for each burst.  

 

 σ σ σ σ = 50 ms    

ST α = 1 α = 1.5 α = 2 

Bias ± std (ms) - 9 ± 13.8 - 15.2 ± 14 -19 ± 20 

FP/Dt 14% / 53% 14% / 50% 5% / 52% 

NV α = 1 α = 1.5 α = 2 

Bias ± std (ms) -0.1 ± 0.7 4 ± 5.3 18.47 ± 20.7 

FP/Dt 0% / 100% 0% / 100% 0% / 100% 

  σ σ σ σ = 150 ms 

 ST α = 1 α = 1.5 α = 2 

Bias ± std (ms) -24.1 ± 13.1 -25 ± 14.7 -16.8 ± 9.1 

FP/Dt 65% / 42% 54% / 41% 22% / 44% 

NV α = 1 α = 1.5 α = 2 

Bias ± std (ms) 0.1 ± 0.9  5.8 ± 7.2  49.9 ± 53.6  

FP/Dt 0% / 100% 0% / 100% 1% / 100% 

 

Table 2. Comparison of results between standard (ST) and novel (NV) 

implementations of the algorithm for VN trials. Results are presented for 

different time supports and are expressed in terms of bias ± standard 

deviation, false pattern percentage (with respect of the total number of 

movements) and detection percentage.    

 

 

This implementation can easily cope with fast changes in 

the SNR, while abrupt, step-like changes in the power of the 

superimposed noise may be mistaken for sEMG bursts, thus 

leading to erroneous detections. Also, this implementation 

can give information on the estimated onset-offset timing 

shortly after the completion of the burst under analysis, with 

a limited time delay depending on the computational 

complexity of the approach. Preliminary trials on simulated 

signals showed a response-time of the algorithm well below 

500ms, thus not significantly affecting real-time use of the 
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method. A more accurate estimation (in terms of megaflops) 

of the delay time will be carried out during further testing of 

the method. Moreover, future developments of this work 

will be based also on the testing of the proposed 

implementation on real sEMG signals during exercises 

specifically designed in order to take into account changes in 

the SNR during their execution, such as isometric 

contractions at different levels of force. 

 

 
Fig. 2.  Example of results obtained with the novel implementation of the 

algorithm on a VN trial (σ = 150, α = 1.5). 

 

IV. CONCLUSION 

 

A novel formulation of the algorithm by Bonato and co-

workers [11] was proposed and tested. This novel method 

was designed in order to deal with dynamic situations in 

which the SNR of the sEMG signal can change due to 

changes intrinsically related to the task performed or due to 

disturbances in the recording environment. Moreover, this 

algorithm can work essentially in real time since it can give 

information on the estimated burst timing shortly after the 

completion of the burst itself. Results show that this 

formulation has a low estimation error when dealing with 

varying SNR, and provides both a higher detection rate and a 

lower false positive rate with respect to the classical 

formulation.  

A further advantage is that the algorithm is almost 

independent of subjective settings of the parameters by the 

operator. 
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