
 

 

 

   

 

Abstract—Two different detection techniques for EMG 

burst detection are here used to reveal tremor in both a set of 

synthetic data and in a small sample of experimental trials. An 

optimization procedure that employs the minimization of a 

cost function to provide the parameter set characterizing the 

two techniques is here presented and its performance assessed. 

The results obtained with the optimization procedure are 

satisfactory and suitable for practical use: the values for both 

bias and standard deviation in the estimation of both onset 

and offset time instants are lower than 10 ms, and the 

sensitivity and positive predictive value in the detection of 

tremor bursts are > 96% for SNR levels higher than 6 dB. 

I. INTRODUCTION 

urface electromyography (sEMG) is widely used in 

many fields such as sport medicine, clinical research and 

rehabilitation. Many studies aimed at processing the sEMG 

signal in order to extract information related to relevant 

variables such as the amplitude of the muscular activation 

[1], [2], or the electrical signs of muscular fatigue [3]. The 

timing of the muscle activation is among the most 

monitored variables and a number of computer-automated 

algorithms have been developed to estimate it [4]. 

Traditional techniques are based on the rectification and 

low-pass filtering of sEMG data followed by a threshold, to 

discriminate muscle activation from the noisy background 

[5], [6]. Even if this approach is computationally 

parsimonious, it is affected by the subjective choice of the 

parameters set. Model-based algorithms override this 

limitation thanks to a more robust mathematical approach 

[7], [8], [9], which is suitable for a wide class of voluntary 

muscular activations. 

However, to the best of our knowledge, little is known 

about the applicability of the standard methods for the 

detection of a specific rhythmic activity such as the 

involuntary muscular activation that drives the oscillatory 

movement known as tremor. Tremor is defined as a roughly 

sinusoidal oscillation of a body part driven by a rhythmic 

muscle contraction, and it is commonly related to the 

manifestation of some kind of neurological disorder, such 

 
Manuscript received April 11, 2011. This work was partially supported 

by the EU Commission under grant Nr. ICT-2007-224051 TREMOR. 
All Authors are with the Departement of Applied Electronics, 

University Roma TRE, Italy ({cdemarchis, conforto, gseverini, schmid, 

dalessio}@uniroma3.it). 

 

as Parkinson's disease, essential tremor and multiple 

sclerosis, besides the more common physiological tremor 

[10], [11], [12]. The detection of tremor bursts could 

provide a useful insight into the mechanisms underlying the 

generation of pathological or physiological tremor, either 

by defining the phase relationship between antagonistic 

muscle pairs [13] or by studying the relationship between 

electrical and mechanical tremor manifestations [14]. 

Moreover, the timely and accurate detection of tremor 

bursts could help in increasing the effectiveness of tremor-

related assistive technologies: for instance, if Functional 

Electrical Stimulation (FES) is employed to reduce tremor, 

the sEMG burst detector may help triggering the 

suppression device that stimulates out-of-phase the 

trembling muscles [15], [16]. Up to now, the only attempt 

aimed at the proper detection of tremor bursts has been 

proposed in [17], where a non linear analysis technique 

based on the calculation of a running Second Order 

Moment Function (SOMF) is used to detect parkinsonian 

tremor bursts. 

In this study, two traditional techniques, respectively the 

single threshold detector (STh) proposed by Hodges et al. 

[6] and the statistical double threshold detector (DTh) 

proposed by Bonato et al. [7], are taken into account, with 

the specific  aim of tracking tremor from the sEMG signal. 

In particular, we will present an optimization procedure 

able to look for the optimal set of the parameters under 

different tremor conditions, through the minimization of a 

cost function that takes into account the algorithm's 

detection ability. This optimization procedure is applied on 

a dataset of synthetic tremor sEMG signals with different 

levels of Signal to Noise Ratio (SNR). Once optimized, the 

behavior of the algorithms is then assessed on tremor 

sEMG signals obtained experimentally.  

II. MATERIALS AND METHODS 

Signals used as a benchmark in this study were simulated 

according to the model of muscle contraction described in 

[18]: a realization of White Gaussian Noise (WGN) was 

band-pass filtered using a filter with the power spectral 

response defined in the following: 
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where P(f) is the power spectrum, Fl is the lower cut-off 

frequency and Fh is the higher cut-off frequency. Values for 
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Fl and Fh were chosen randomly for each simulated signal 

respectively in the range [40-60] Hz and [100-120] Hz. The 

presence of muscle contraction was simulated through 

amplitude modulation by a train of gaussian functions with 

a standard deviation randomly variable in the range [20-30] 

ms, in order to model a single tremor burst as a fast muscle 

contraction with energy distribution concentrated in a short 

time interval. An uncorrelated realization of WGN was 

superimposed to the signal realization in order to model 

background noise activity; noise variance was chosen in 

order to provide the desired level of SNR. Realizations of 

tremor sEMG signals were generated with tremor 

frequencies spanning in the typical range of pathological 

tremor [4–10] Hz, and with SNR levels in the range [2 – 

20] dB.  

A. Experimental Signals 

Experimental sEMG signals were recorded from one 

patient affected by Essential Tremor (ET), by using patches 

composed by a 8x8 array of electrodes similar to the one 

presented in [20]. The patches were positioned over biceps, 

triceps, flexor and extensor muscles of the upper limb. 

sEMG signals were acquired using 2 OT Bioelettronica 

EMG-USB amplifiers, and each channel was band-pass 

filtered in the [10-750] Hz band, sampled at 2048 Hz and 

digitized at 12 bit. Data were recorded while the patient 

maintained the arm outstretched in front of the body against 

gravity.   

B. Optimization Procedure 

The optimization was carried out by defining a cost 

function T representative of the overall detector 

performance, which takes into account the following 

detection performance measures: sensitivity (S) and 

positive predictive value (P) in the detection of the single 

tremor bursts, standard deviation (σ) and bias (µ) in the 

estimation of the onset and offset time instants of the 

tremor bursts. For the definition of the cost function we 

firstly introduce a vector V in the space (S,P): 
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whose amplitude approaches unity as the detection 

performance increases. Once |V| is calculated, a modulation 

parameter M is introduced, which is related to the 

performance of the detector in terms of σ and µ, as follows: 
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where the notation i refers to either onset or offset, µN and 

σN refer respectively to the normalized values of µ and σ 

with respect to the maximum acceptable value for the error 

- set at 50 ms for both the onset and offset estimation - and 

ρN denotes the corresponding normalized root mean square 

error. M approaches unity as the estimation of the transition 

instants improves. The cost function is then defined by: 
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where the amplitude of the vector V is multiplied by the 

parameter M. Since the overall detector performance 

improves as T goes towards 0, the aim of the optimization 

procedure is the minimization of the cost function T 

defined in (4), which corresponds to find the set of 

parameters that leads to an increase of S and P, and to a 

reduction of ρ at the same time. 

C.  Single Threshold detector (STh) 

Single threshold algorithms employ a decision function 

with reference to a window sliding over the sEMG signal 

that is full-wave rectified and low-pass filtered: muscle 

active state at the time instant ti is identified when the value 

of the decision function exceeds a user-predefined 

threshold. We considered the method described in [6] as 

representative of the class of single threshold algorithms. 

This method takes into account the first K samples of a 

signal where no muscle activity is supposed to be present, 

and determines the mean value m and the standard 

deviation s of the values in this interval; then the decision 

function is computed sample by sample as the mean of the 

samples inside the sliding window W, and the muscle active 

state is indicated if this value exceeds the threshold m+hs, 

being h a real positive multiplying value. For our purposes, 

we set the cut-off frequency of the low-pass filter at 50 Hz, 

as indicated in [4], and the values of m and s were 

calculated inside the first K = 300 samples. Then the 

algorithm is completely characterized by the pair {W-h}, 

being W the window width and h the multiplicative value 

defining the threshold. The optimization was thus 

performed by varying the parameters W and h and 

calculating the cost function T for different SNR levels. The 

parameters W and h were chosen respectively from W = 

{10,20,30,40,50,60,70} ms and h = {3,4,5,6}, thus leading 

to 28 different algorithm configurations. For each level of 

SNR ([2-20] dB), each pair {W-h} was tested on 100 sEMG 

realizations with tremor frequency varying randomly in the 

previously defined range. A post-processor was applied to 

the raw output of the algorithm in order to eliminate 

inconsistent transitions: in particular the post-processor 

merges multiple transitions if they are less than 10 ms 

apart, because they are considered as representative of the 

same tremor burst, and rejects isolated bursts lasting less 

than 10 ms since they are considered as physiologically 

inconsistent with a tremor event. The resulting values of S, 

P, µ and σ were used to calculate the cost function T for that 

level of SNR. 

D. Double Threshold detector (DTh) 

The statistical double threshold detector [7] is based on the 

assumption that a sEMG signal {xi} can be modeled as 

described in [19]. The series {xi} is whitened and used to 

construct a series defined as: 
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that has a χ square distribution with 2 DOF, and is used to 

define the algorithm decision function. The decision rule 

says that if at least r out of n successive samples lie above a 

predefined threshold value th, the muscle active state is 

detected. Therefore, r works as a second threshold of the 

algorithm, while the value of the first threshold th depends 

on the estimated SNR and is related to the user desired false 

alarm probability. The optimization is performed by 

keeping the parameter n fixed at 5, so that the algorithm is 

completely characterized by the pair {Pz-r}, where Pz is the  

probability that a noise sample is above the threshold th. 

The algorithm parameters were chosen in the following 

sets: Pz = {0.005-0.1} with steps of 0.005 and r = 

{1,2,3,4,5}, leading to 100 different configurations. In the 

optimization phase, the same sEMG signal dataset 

described for the STh was used, and the post-processor 

described in [7] was limited to 10 ms since, besides a 

tremor event with a duration lower than 10 ms being not 

plausible, the low duration of the inter-burst distance at 

higher tremor frequencies could affect the detector output. 

III. RESULTS 

The optimization for the two algorithms led to the optimal 

parameters set shown in figure 1, in the space {W-h} and 

{Pz-r} for the STh and DTh respectively. 

 

 
Figure 1: Optimal values of the algorithm parameters when varying SNR: 

(a) optimal W values of the STh, corresponding to different levels of the 

multiplicative threshold h, and (b) the corresponding cost function T 

values; (c) optimal Pz values of the DTh corresponding to different levels 

of the second threshold r, and (d) the corresponding cost function T values. 

 

When varying the SNR level, a general pattern in the data is 

present: for STh, the optimal configuration of the 

parameters seems to be related to SNR only through the 

window width W, since it decreases when SNR increases, 

while the multiplicative threshold h shows little influence 

on the T function (fig. 1-b). For DTh, the optimal 

configuration shows a decreasing trend for the optimum 

value of  Pz, with the second threshold r fixed to 1, while 

for r = 2 the decreasing behavior starts from 8 dB (fig. 1-

d). Nevertheless, both detectors show an optimal 

configuration that depends on the current SNR level (fig. 2), 

and this may not be suitable when working with real tremor 

conditions, as the SNR can vary with time (and thus may 

bring to the need of estimating sample by sample the local 

SNR in order to properly detect tremor activation patterns). 

 

 
 
Figure 2: Mesh depicting T as a function of parameters W (meshes 1-4), or 

Pz (meshes 5-7), and SNR. Different meshes correspond to different value 

of the second parameter (h in meshes 1-4, and r in meshes 5-7). The white 
line shows the trajectory of the minimum value of T, as a function of SNR. 

 

In order to make the detector less sensitive to the variations 

in the local SNR, a general configuration for the algorithms 

can be found, able to provide a T value lower than a given 

threshold for a range of SNR levels. In this way we can 

define a criterion of acceptability by thresholding the T 

function and thus choosing the best configurations for  

muscular timing detection. With a threshold value equal to 

0.25, no configurations with SNR lower than 6dB were 

found for DTh, and were thus discarded from the analysis.  

In DTh, the set {Pz = 0.02, r = 1} provides T values under 

the threshold for every considered SNR; the corresponding 

set for the STh ({W = 30 ms, h = 4}) leads to a T value 

always lower than 0.23. The corresponding values of S and 

P are higher than 0.96, with σ and µ constantly below 10 ms 

and then comparable with the ones commonly accepted in 

literature. However, besides the optimal configurations, 

from the comparison between the map of the T cost 

functions for the two analyzed methods (fig. 1) it emerges 
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that the behavior of STh is less sensitive to the variations of 

parameters, as shown by the wider extension of the zone 

with low T values. 

 
Figure 3: Real tremor sEMG signal recorded on the triceps muscle during 

an arm outstretching task: the output of both the algorithms (upper panel: 

DTh, lower panel: STh)  with the optimal and a non-optimal parameter set 
is showed. 

 

In figure 3, the output of the two algorithms on a real 

tremor sEMG signal recorded from the experimental trials 

described in the previous section is shown (triceps muscle 

during an Arm Outstretching task). Both algorithms are 

able to properly detect tremor bursts when the optimal set is 

used.  

IV. DISCUSSION AND CONCLUSIONS  

Two traditional algorithms for the detection of muscle 

activation intervals, respectively the STh detector proposed 

by Hodges and colleagues, and the DTh detector proposed 

by Bonato and co-workers, were analyzed when applied to 

tremor sEMG signals. With the optimization procedure 

presented in this work the optimal parameter set for the 

detection and timing of muscular tremor bursts was found 

for both the detectors. The STh detector presents lower 

sensitivity to the variations of the cost function with respect 

to changes in the parameters than the DTh. In order to make 

the parameters of the two algorithms as independent as 

possible from the current SNR and then applicable to tremor 

data series, a general set providing a value of the cost 

function as low as possible was found. The results obtained 

with the optimal parameter sets ({W = 30 ms - h = 4} for 

STh and {Pz = 0.02 and r = 2} for DTh) are comparable 

with those commonly accepted in literature, and they are 

thus suitable for use in clinical practice. Compared to the 

technique proposed in [17] where computational simplicity 

is accompanied by a parameter set that is chosen 

empirically across trials, the analyzed methods are able to 

provide the on/off timing of the single tremor bursts with 

an optimized parameter set that does not depend on tremor 

frequency and SNR. 

Limitations of the analyzed method could rise when 

variations in the background noise or tonic muscle activity 

are present: this may lead to equivalent changes in the SNR 

that would decrease the accuracy in the detection for both 

methods. Further studies may address this issue, by 

proposing SNR-adaptive methods for tremor burst 

detection. 
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