
  

  

Abstract—Detection of epileptiform activity is of interest for 
responsive stimulation and diagnostic or monitoring devices in 
epilepsy; some implantable systems use low-computational-
complexity algorithms such as line length trending and half-
wave detection.  Broadband noise was added to recorded 
electrocorticographic signals in order to model the potential 
impact of factors such as electrode-tissue interface properties 
and distance from the epileptic focus on these detection tools.  
Simulation demonstrated that half-wave and line length tools 
can yield consistent results in the presence of moderate 
amounts of noise. 

I. INTRODUCTION 
PILEPSY is a relatively common neurological disorder 
affecting up to 3% of the population [1].  At least 30% 

of these patients are not adequately treated with antiepileptic 
drugs, meaning that seizures are not entirely suppressed, and 
in an additional fraction of patients seizures are suppressed 
at the cost of adverse drug effects such as cognitive 
impairment and fatigue [2].  Even infrequent seizures in 
refractory (uncontrolled or poorly controlled) epilepsy can 
greatly impact quality of life for patients, affecting for 
instance the ability to qualify for a driver’s license.  

Furthermore, approximately 60 percent of epilepsy cases 
are localization-related, meaning that seizures can be 
attributed to one or more specific anatomical foci, and the 
majority of these patients experience complex partial 
seizures [3].  A minority of these patients with refractory, 
localization-related epilepsy are candidates for resective 
surgery [4], which under optimal conditions yields a one-
year seizure freedom rate of 56 - 77% [5], but is not 
acceptable to many patients [6] and is accompanied by 
drawbacks such as surgical risk and potential of functional 
deficits.  Vagal nerve stimulation provides an additional 
option and has been shown to yield a median seizure 
reduction of 25 to 30% [7], but rarely results in freedom 
from seizures [8].  

The motivation for developing new treatments, thus, is 
clear, and in localization-related epilepsy there is great 
interest in interventions that specifically target the epileptic 
focus.  Over the long history of surgical procedures for 
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epilepsy – including intracranial mapping and resective 
surgery – it has been observed that cortical electrical 
stimulation can disrupt epileptiform activity [9][10] and 
terminate seizure-like afterdischarges caused by cortical 
mapping [11][12].  Focal hippocampal stimulation [13] has 
shown some success in reducing seizures.  Non-responsive 
and non-focal stimulation, while outside the scope of this 
paper, is also a promising area of research for both focal and 
non-focal epilepsies and has been the subject of a major 
clinical trial [14]. 

Because seizures are episodic and associated with 
electrographic changes, responsive electrical stimulation 
holds particular promise, and researchers over the past 
decade have undertaken to “close the loop” [15][16] and 
stimulate in response to epileptiform activity.  Preliminary 
studies using a bedside device [17]-[19] led to development 
of the first fully-implantable responsive neurostimulator for 
epilepsy as part of the NeuroPace RNS® System 
(NeuroPace, Inc., Mountain View, CA), which is currently 
being evaluated for safety and efficacy in clinical trials. 

Work toward closed-loop stimulation as well as efforts to 
detect seizures for diagnostic and warning purposes [20]-
[22] have driven development and optimization of methods 
to detect epileptiform activity using electrocorticographic 
(ECoG) data, and this is now a somewhat mature field [23].  
Specifically, power and size constraints on implantable 
systems require the use of algorithms having relatively low 
computational complexity, such as line length [24] and half-
wave detection [25][26]. 

These tools are dependent on epileptiform signals being 
discernable in the electrographic data, and detection 
performance has been well-characterized using both real and 
simulated epileptiform activity.  However, the actual 
prominence of epileptiform activity will depend on factors 
such as the functional synchrony and amount of tissue 
generating the activity, the distance between the electrodes 
and the focus, the amount and character of spontaneous 
activity in the region, the electrical and geometric properties 
of the surrounding tissue, and the electrical properties, such 
as impedance, of the electrode-tissue interface. 

In this paper, we assume that the cumulative effect of 
these factors may be approximated as the effect of broad-
spectrum background noise.   Using electrographic data 
previously recorded by the RNS System, we simulated 
changes in detection performance while varying the relative 
amount of real signal versus broad-spectrum noise. 
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Fig. 2.  Typical data for patient 1, including epileptiform activity 
recorded from hippocampus (A), the ECoG record and its power 
spectrum selected as a basis for noise generation (B and inset), and 
simulated broad-spectrum noise and its power spectrum (C and inset).  
Power spectra are in arbitrary units. 

II. METHODS 

A. System overview  
The RNS® System (Fig. 1) consists of a cranially-

implanted neurostimulator and leads, a physician 
programmer and wand capable of wireless communication 
with the implanted device, a data transmitter used by the 
patient to upload recorded data, and a Patient Data 
Management System (PDMS) which receives and provides 
access to these data. 

The neurostimulator is 28 mm wide, 60 mm long, and 7.7 
mm thick and is shaped to approximate the typical curvature 
and thickness of the calvarium.  At implant, a section of 
skull is removed that corresponds to the size and shape of 

the neurostimulator.  A titanium ferrule (a tray that is similar 
to a skull plate) is inserted in the resulting opening, and 
attached to its perimeter using standard bone screws.  The 
neurostimulator is then inserted into the ferrule. 

Either one or two leads are implanted to situate electrodes 
as close as possible to the epileptic focus or foci, and the 
leads are  routed to the neurostimulator through burr holes 
or through the craniectomy.  Both depth leads, similar in 
geometry and construction to those commercially available 
for deep brain stimulation, and cortical strip leads, similar to 
those commercially available for intracranial monitoring, are 
provided with the system.  The distal end of each lead bears 
four platinum/iridium electrodes of surface area 7.9 mm2 
apiece.  The neurostimulator continuously analyzes 
incoming ECoG data and delivers electrical stimulation 
when the patient’s characteristic epileptiform activity is 
detected. 

In addition to its detection and stimulation capabilities, 
the neurostimulator can be configured to record up to four 
channels of ECoG activity in response to detected 
electrographic events or patient activation using a magnet, or 
according to a predefined schedule.  All data are 
appropriately pre-filtered before digitization at a sampling 
rate of 250 Hz. 

B. Simulated noise and detection 
To provide a realistic basis for the stimulation, ECoG 

records were selected from three patients, all with mesial 
temporal foci.  All records were greater than 20 seconds 
long (32 to 180 s, median duration 90 s) and were collected 
between 7 and 139 days (inclusive) after initial implant.  
Records including artifact due to neurostimulator-delivered 
stimulation were excluded; this yielded 305, 43, and 112 
ECoG records respectively for the three patients. 

Broad-spectrum noise was generated with a typical power 
spectrum individualized for each patient’s data (Fig. 2). For 

   
 
Fig. 1.  Typical NeuroPace RNS® System implant configuration is shown 
in schematic view, with inset showing the implantable neurostimulator.  
Up to two leads may be connected to the neurostimulator; either may be a 
depth lead or cortical strip lead with electrodes placed at or near the 
seizure focus. 

 TABLE I 
DETECTION TOOLS USED IN SIMULATION 

 

Parameter HW1 (8-25 Hz, 
moderate amplitude) 

HW2 (2-125 Hz, 
spike) 

Min HW amplitude (arb. units) 80 400 
Hysteresis threshold (arb. units) 50 32 

Min HW duration (ms) 16 0 
HW count threshold (arb. units) 7 in 440 ms 4 in 1000 ms 

Analysis window thresh. 8 of 8 windows 2 of 4 windows 
Persistence (s) 1 1 

   

Parameter LL1 
(% threshold) 

LL2 
(fixed threshold)

Short-term window (ms) 4096 4096 
Long-term window (ms) 16384 16384 

Sampling interval (ms) 4096 4096 
Threshold 6.25% 40 units 

Persistence (s) 1 1 
 

 Simulated detection tools, including an alpha/beta band half-wave 
detector HW1, a spike (half-wave) detector HW2, and line length 
detectors with percentage threshold LL1 and fixed threshold LL2. 
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each patient, we identified an ECoG record believed to be 
characteristic of the patient’s non- or less-epileptiform 
activity, insofar as possible in a system where all electrodes 
are placed near the focus.  Noise segments used in the 
simulation were generated by taking the fast Fourier 
transform of the patient’s exemplary non-epileptiform 
record, randomly shuffling phase values between frequency 
bins, and reconstituting a time-domain signal using the real 
component of the inverse fast Fourier transform.  This 
shuffling and reconstitution was done 25 times, yielding 25 
segments of individualized noise, for each patient. 

Four detection tools, labeled HW1, HW2, LL1, and LL2, 
were chosen for simulation (Table I).  Each detection tool 
was exemplary of its class, and each was an appropriate 
detector for interictal epileptiform activity in one of the three 
patients.  Specifically, HW1 was a typical half-wave 
algorithm programmed to detect alpha- and beta- band 
oscillations, HW2 was a typical half-wave-based spike 
detector, and LL1 / LL2 were programmed to identify 
increases in line length compared to a 16-second-long trend.  
Detection parameters were adjusted to be fairly sensitive and 
to give similar detection rates for each detector (see Table 
II).  Details regarding detector operation may be found in 
the references cited previously [24]-[26]. 

ECoG records for each of the three patients were passed 
through the detection tool appropriate to that patient to 
determine “baseline” (no added noise) detection behavior 
(Fig. 3).  This yielded a list of time windows (with 128 ms 
granularity) at which the detection tool would either trigger 
(output = 1, indicating detection) or not (output = 0).  Then, 

new records were created by additively combining 
individualized broad-spectrum noise segments with 
attenuated versions of the original ECoG records.  Scaling 
factors used for original ECoG data and noise, respectively, 
were 0.9:0.2, 0.8:0.4, 0.7:0.6, 0.6:0.8, and 0.5:1.0. This was 
repeated 25 times for each ECoG record, applying each of 
the 25 noise segments in turn. 

Finally, since tools HW1, HW2, and LL2 involve 
threshold parameters related to the absolute magnitude of 
ECoG features, these tools were re-run while appropriately 
scaling these parameters by the signal attenuation factor. 

Similarity of detection output between the noise-added 
and baseline records was quantified (see below) and 
averaged across the multiple ECoGs and 25 noise segments 
to yield an overall value for each detection tool and each 
amount of noise. 

III. RESULTS 
 

Results are shown in Table II.  Values in this table 
indicate the fraction of detections that remained stable in the 
presence of noise; specifically, the number of timepoints 
marked as “detections” in both the baseline and noise-added 
records, divided by the total number of timepoints marked as 
detections in either the baseline or noise-added records.  
Thus, values approaching 1 indicate similar detection 
behavior in the baseline and noise-added conditions, while 
values approaching 0 indicate dissimilar detection behavior. 

As expected, before parameter scaling the half-wave 
detector HW1 was most affected by the presence of broad-
spectrum noise and by signal attenuation.  Examination of 
intermediate results showed that attenuation of the original 
signal meant that half-waves due to alpha/beta band 
oscillations – already of moderate amplitude – were less 

        
Fig. 3.  Operation of alpha/beta detector HW1, including original ECoG 
record (A) and ECoG record with 50% attenuation and full-amplitude 
noise added and half-wave parameters adjusted appropriately (B).  Some 
effect on qualified half-waves (black ticks below ECoGs) is apparent, but 
detection results (black traces, higher value indicates detection) are quite 
similar. 

 

TABLE II 
STABILITY OF DETECTION TOOLS IN THE PRESENCE OF NOISE 

 
   

 HW1 HW1 
scaled HW2 HW2 

scaled 

Initial detections per 30 sec in 
baseline data 3.13  2.32  

Signal : noise scaling factors     
0.9 : 0.2 0.75 0.93 0.84 0.96 
0.8 : 0.4 0.60 0.87 0.70 0.93 
0.7 : 0.6 0.46 0.83 0.52 0.90 
0.6 : 0.8 0.32 0.77 0.33 0.85 
0.5 : 1.0 0.19 0.64 0.21 0.81 

     
 LL1 LL2 LL2 

scaled 
Initial detections per 30 sec in 

baseline data 2.30 2.33  

Signal : noise scaling factors    
0.9 : 0.2 0.99 0.97 0.99 
0.8 : 0.4 0.97 0.93 0.97 
0.7 : 0.6 0.95 0.88 0.96 
0.6 : 0.8 0.91 0.80 0.93 
0.5 : 1.0 0.86 0.70 0.90 

 
Values shown indicate the fraction of detections that are stable (see 

text); higher values indicate less change in detection compared to the 
no-added-noise case.  “Initial detections” means the number of 
transitions from no-detection to detection. 
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likely to meet the amplitude and hysteresis criteria.  In 
practice, however, the amplitude and hysteresis parameters 
can be adjusted to compensate for lower-amplitude signals, 
and when this rescaling was applied (see column for HW1 
scaled, Table II) detection was shown to be relatively stable.  
64% of detection timepoints were identical to the baseline 
case, even in the worst case tested (50% signal attenuation 
and full-amplitude noise). 

The spike detector HW2 was less affected for low noise 
amplitudes, even without parameter adjustment.  This is 
consistent with the fact that spikes are highly detectable 
events and a threshold can easily be set to distinguish them 
from broadband noise and background ECoG.  However, 
increases in signal attenuation eventually mean that even 
large spike-related half-waves do not meet the amplitude 
criterion, so parameter adjustment is of value here as well.  
With appropriate scaling, 81% of detection timepoints were 
identical to the baseline case in the worst case tested.  

The line length detector LL1 was least affected by signal 
attenuation and moderate amounts of broadband noise; this 
is consistent with expectations for a detector using a 
percentage threshold and relatively long short-term window 
(4096 ms), since relative changes in line length will not be 
affected by attenuation, and brief fluctuations in noise 
characteristics will not affect even the short-term trend.  
86% of detections were identical to baseline in the worst 
case tested. 

Finally, before parameter scaling the line length detector 
LL2 was moderately affected by the presence of large 
amounts of broadband noise, as expected for a detector 
using a fixed-value threshold.  Appropriate parameter 
adjustment yielded a stable detector with 90% of detections 
identical to baseline in the worst case tested. 
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