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Abstract—This paper presents a novel, unsupervised spike clas-
sification algorithm for intracranial EEG. The method combines
template matching and principal component analysis (PCA) for
building a dynamic patient-specific codebook without a priori
knowledge of the spike waveforms. The problem of misclassifica-
tion due to overlapping classes is resolved by identifying similar
classes in the codebook using hierarchical clustering. Cluster
quality is visually assessed by projecting inter- and intra- clusters
onto a 3D plot. Intracranial EEG from 5 patients was utilized to
optimize the algorithm. The resulting codebook retains 82.1%
of the detected spikes in non-overlapping and disjoint clusters.
Initial results suggest a definite role of this method for both rapid
review and quantitation of interictal spikes that could enhance
both clinical treatment and research studies on epileptic patients.

Index Terms—EEG, interictal spike, clustering, PCA

I. INTRODUCTION

PATIENTS with medically refractory epilepsy are often
candidates for resective surgery when they fail to respond

to medications. In order to guarantee a good outcome, it is crit-
ical that regions of the brain that produce seizures and epileptic
activities are identified. These patients undergo prolonged
intracranial EEG monitoring that allows neurophysiologists to
determine seizure foci and other areas that show interictal
epileptic activities or spikes. Prolonged EEG monitoring, can
last from a few to many days and generates a massive amount
of data. Visual review of such voluminous data for spike
and seizure detection is very tiresome, laborious, expensive,
and lacks quantitation. For this reason, automatic spike and
seizure detection techniques have received intense attention.
Although, automatic methods significantly reduce review time,
their performance is still not acceptable to the well-trained
EEGers.

Several studies report a better surgical outcome when re-
moving regions of frequent interictal spikes in addition to
the regions of seizure onset [1], [2]. However, exactly how
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interictal spikes develop and how they propagate and contribute
to the generation of seizures is not well understood [1], [3].
A recent study examined human brain tissues at regions of
seizure onset and defined a small group of genes that are highly
correlated with the interictal spike frequency [4], [5]. Thus,
both qualitative and quantitative analysis of interictal spiking
is not only important for patient management, but may also
help identify epileptic biomarkers and drug targets.

Spike sorting is the first step in the qualitative and quantita-
tive analysis of interictal spikes. The process involves detecting
spikes, and clustering or mapping each spike to its source.
Spike sorting is generally considered a high dimensional clus-
tering problem that still remains incompletely-solved due to
issues of nonstationarity, non-Gaussianity, and temporal depen-
dencies between spikes [6]-[12]. In addition, classifying spikes
directly from the recorded waveforms in high dimensional
space is challenging because data points would be sparse, and
clustering algorithms tend to be imprecise [7], [13], [14]. Cor-
recting sorting errors manually thus becomes mandatory, which
is time-intensive and subjective [14]. Furthermore, complexity
of spike sorting increases in clinical situations where up to 128
electrodes are sampled simultaneously for many days. Note
that a small EEG section can contain thousands of interictal
spikes. Therefore, computationally light, accurate and robust
spike sorting methods to reduce the load of manual spike
sorting are sought.

Several spike-sorting methods exist in the literature that are
specifically designed for scalp EEG. These are limited to a
few channels and require the knowledge of complete record-
ing prior to classification. Template-based matching methods
report a superior performance over other techniques. These
methods mainly employ principal component analysis (PCA)
and wavelet transformations to generate spike templates from
all spikes in the recording [6], [12].

One of the major challenges in online spike sorting methods
arises due to a wide variety of spike waveforms and the lack
of a priori knowledge of spike information for each patient.
The large number of electrodes introduces computational com-
plexity which can vary from patient to patient. Furthermore,
the EEG is digitized at different sampling rates (200 to 1000
Hz) within the same centre and across laboratories. Sorting
methods based on multi-resolution analysis such as wavelet
transform are limited by the sampling rate which ultimately
limits their widespread application [12], [15]. Representation
of spikes in terms of features loses the morphology of the
spikes, which is important in invasive studies [12], [15]. New
spike sorting methods are needed that address these practical
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Figure 1. Block diagram of the proposed spike-sorting algorithm.

Figure 2. Illustration of spike, spike-wave complex and intermediate stages of the proposed spike sorting algorithm. (a) represents multichannel spike and
spike-wave complexes. Spike events are in the rectangular (‘blue’) box in a-c. The reference spike (shown by thick ‘red’ in a-d) is the event detected by
the spike detector. The spike alignment block aligns multichannel spike event (b) w.r.t. the reference spike. The resulting aligned events are shown in (c).
Morphological correlator retains only spikes similar to the reference spike as seen in (d). Spike-wave complex resulting from morphological correlator shown
in (d) is input to the PCA block to identify candidate template (e). Note that number of channels is limited to 11 for illustration, and x-axis represents time
in milliseconds.

issues, but without a loss of performance.
Here, we present a novel, computationally light, automatic,

patient-specific spike sorting method that assumes no a priori
knowledge of the spike waveform. The method is not depen-
dent on the sampling rate or number of electrodes. Spike wave-
form morphologies are retained with dynamically derived spike
templates. The method first aligns the multichannel EEG spike
apex. A codebook is derived using a morphological correlator,
PCA, and template matching of the multichannel spike event.
The codebook is updated with every subsequent spike-wave
complex (SWC). The update refines an existing SWC template
or creates a new class as necessary. Redundant and irrelevant
classes in the codebook are removed automatically by the
hierarchical clustering and validation module after completing
the online analysis. Preliminary results from five patients are
presented and reveal well-separated distinct spike classes in
the dominant clusters with average retention of 82.1% of the
detected spikes.

II. METHOD

Five patients with medically intractable epilepsy underwent
long-term intracranial EEG monitoring between January 2002
and August 2008. The long-term recordings were obtained with
subdural grid electrodes varying from 84-128 channels using
a Stellate Harmonie digital recorder (Stellate Inc., Montreal,
Canada) with a sampling rate of 200 Hz for each channel. For
each patient, three distinct 10 minute segments of continuous
awake EEG were selected with the following criteria: (a) at
least a 3 hours between each segment; and (b) ≥ 2 hours after
a partial seizure and ≥ 8 hours after a secondarily generalized
tonic-clonic seizure as described in [4]. One of the three

randomly selected 10-minute sections constitutes the training
data in this study.

The block diagram of the proposed spike-sorting algorithm
is shown in Fig. 1. It is composed of six blocks: (a) spike
detection, (b) spike alignment, (c) morphological correlator,
(d) principal component analysis, (e) template matching, and
(f) hierarchical clustering and validation.

It is important to define various terms used in this paper
before describing each of the blocks. We define spike detected
on any specific channel as the reference spike (shown in
thick ‘red’ in Fig. 2 a-d), and multichannel EEG centered
on the vertex of the reference spike as the multichannel
spike event (Fig. 2 c). A variety of clinical studies examine not
only the spike but also the waveform following the spike, which
we define as the spike-wave complex (SWC) shown in Fig.
2. Since, we use the multichannel spike event, the additional
EEG waveform for each channel following the spike constitutes
the multichannel SWC. The best representation for a group of
SWCs is defined as the template. Codebook is a collection of
templates for a patient. The details of each of the six blocks
of the proposed methods are described below.

A. Spike Detection

The state-dependent spike detection algorithm in the Stellate
Harmonie software v 6.2e (Stellate Inc.) with default settings
is utilized to detect spikes in the data [16]. In this paper,
even though previously detected spikes are utilized for spike
clustering, processing of the data is done in an online fashion.
The processing is done sequentially one spike at a time as it
would be in the online case. Multichannel EEG around the
detected (reference) spike is extracted for the analysis.
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B. Spike Alignment

The multichannel EEG is aligned with respect to the refer-
ence spike. The multichannel data of Fig. 2b is input to the
spike alignment block that corrects the misalignment in the
spike apex by examining local maxima and minima within ±
25 ms of the reference vertex. The aligned multichannel spike
waveform of 100 ms length (± 50 ms around the corrected
spike vertex) is defined as multichannel spike event X ∈ Rnxm,
where n is the number of channels of length m (Fig. 2c).

C. Morphological Correlator

The aligned multichannel spike event X and the reference
spike (Fig. 2c) is input to the morphological correlator. This
step identifies spikes similar to the reference spike among the
other channels. To do so, correlation coefficient ρij defined by
(1) is computed, where i = 1, . . . , n and j is the reference
spike. Spikes similar to the reference spike are identified by
comparing ρij to a threshold ρMC (Fig. 2d). A correlation
coefficient greater than ρMC = 0.7 is considered suitable
to identify similar spikes. This step reduces the number of
channels and is similar to subtractive clustering [6] resulting
in the multichannel SWC event Y ∈ Rnxk, where n is the
number of channels of length k (≥ m). The length of SWC k
is 250 ms that includes spike and 150 ms waveform following
the spike is considered suitable for this study.

ρij =
nΣxixj − (Σxi)(Σxj)√

n(Σx2i )− (Σxi)2
√
n(Σx2j )− (Σxj)2

(1)

D. Principal Component Analysis (PCA)

PCA is used to extract the principal components from the
multichannel SWC Y,

Y = SLT , (2)

where L is the principal component loading matrix and S the
principal component scores matrix [6]. In this study, we use the
first principal component as the candidate spike-wave complex
(Fig. 2e) for the template matching. This block increases the
signal-to-noise ratio of the SWC while preserving the SWC
morphology and reducing the data dimensionality. Note that
PCA seeks directions (principal directions) that best represent
the original data. Identifying spikes similar to the reference
spike using morphological correlator reduces the computational
complexity and always directs the principal component (first
component) towards the reference spike.

E. Codebook-based Template-matching

The codebook stores SWC templates, class membership
details such as time and channel of occurrence, and various
properties of the individual SWCs. The ith candidate spike-
waveform complex (Ci) is matched with the templates in the
codebook. The template matching is correlation-based, and best
match to the Ci is identified by (1). The template matching
threshold ρTM is set to 0.9. The template is updated by taking
average of the Ci with the best matching template in the

Figure 3. Visual cluster analysis

codebook. However, if no suitable match to Ci is found, the
codebook is appended with a new class.

F. Hierarchical Clustering and Validation

This block examines codebook in the offline mode when all
spikes in the data have been classified. Overlapping clusters and
insignificant templates (due to noise) are identified with this
strategy. The bottom-up (agglomerative) hierarchical clustering
is utilized to identify and merge overlapping clusters. The pro-
cess iterates until all objects are aggregated into a single class
using the minimum distance linkage rule where the similarity
parameter is the Mahalanobis distance. This approach allows
good separation of the clusters.

Rarely occurring SWC events are deleted from the codebook
by applying a threshold relative to the highest-ranking template
(template with the highest number of members). The threshold
is set to 10% obtained from receiver operating characteristic
curve.

III. RESULTS

One of the main challenges in the spike sorting is the lack
of a priori knowledge of the total number of spike classes
in the recording. Analyzing cluster quality thus becomes very
difficult. Codebook quality is assessed by inter- and intra-
cluster distance measures. These measures are projected on
a 3-dimensional plot that provides appealing and easy-to-
interpret visual cluster analysis (see Fig. 3). The example
depicts 3D projection of inter- and intra- cluster distance before
hierarchical clustering. It illustrates that the proposed spike-
sorting method resulted in six clusters of which four are well
separated compact clusters while two clusters overlap. Over-
lapping clusters are identified and merged by the hierarchical
clustering and validation block. The output resulting from the
hierarchical clustering blocks are both compact and disjoint.

The spike-sorting results were visually examined for the
number of overlapping clusters (Table 1). Visual examination
of the codebook and 3D cluster quality plot confirmed dis-
tinct and compact clusters for all five patients. An example
of the codebook for Patient #3 is shown in Fig. 4. The
codebook contains three significant spike classes obtained
by the proposed spike-sorting algorithm. The templates are
shown in ‘red’ superimposed over its members (Fig. 4A).
The cluster quality plot depicts (Fig. 4B) disjoint and well-
separated clusters. We also generated dendrogram plot of the
codebook to examine separation between the clusters (Fig. 4C).
The dendrogram plot is generated by a bottom-up complete
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Table I
CODEBOOK ANALYSIS

PID = Patient index, TS = total number of spikes detected, TSC = total
number of significant clusters, TOC = total number of overlapping
clusters, SL = percentage of spikes lost, TIC = total number of
insignificant clusters (rejected clusters), and SPIC = average number
of spikes in the rejected clusters.

Figure 4. Example of dynamic codebook obtained by the proposed system
for Patient #3. (A) represents the template and its member. The template is
shown in ‘red’. (B) presents the projection inter- and intra- cluster distance on
to a 3D plot that allows rapid examination of cluster quality. No overlapping
or closely-spaced clusters are seen in this data. (C) depicts the dendogram
mapping of the codebook. This is a secondary approach to examine codebook
quality. Class 1 and Class 3 templates are similar to each other in the spike
waveform. However, the wave complex following the spike are different. The
two classes are placed at the same node based on the similarity measure in
the dendogram.

linkage rule with Euclidean distance. This secondary approach
also allows scrutinizing the cluster quality.

Spikes originating from the same brain region tend to have
same morphology and will be retained in the significant clusters
resulting from the sorting algorithm. The proposed sorting
algorithm retains 82.1% of the automatically detected spikes.
All of the resulting clusters (significant) were disjoint and
compact (Table I). On average, the method rejects 17.9% of the
total detected spikes that were distributed across 120 clusters
per patient. The average number of spikes in each of the
insignificant clusters was approximately 8 compared to 1570 in
the significant clusters. A majority of the rejected clusters were
due to either artifact events or were rarely occurring events.

IV. SUMMARY

In this paper, a new multichannel spike sorting method with
a dynamic patient-specific codebook is presented. The method
builds the codebook without any a priori knowledge about
the spikes. Our method performs spike sorting using the spike
waveform that combines a simple spike alignment technique, a

morphological correlator, PCA, and template matching to gen-
erate the patient-specific codebook. To address the problem of
overlapping and redundant classes in the codebook, hierarchical
clustering is performed at the completion of classification,
resulting in compact and non-overlapping classes. The method
was optimized using multichannel subdural EEG recordings
from 5 patients. For each patient, the classification results
were visually screened. The resulting codebook retained 82%
of the detected spikes in disjoint and well-separated clusters
reflecting robustness of the proposed method. Future work will
require validation of the cluster quality by various techniques,
comparison of the method against other published methods for
spike sorting, and most importantly clinical validation of the
clusters by trained electrophysiologists.
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