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Abstract— We propose a novel patient-specific method for
predicting epileptic seizures by analysis of positive zero-crossing
intervals in scalp electroencephalogram (EEG). In real-time
analysis, the histogram of these intervals for the current EEG
epoch is computed, and the values which correspond to the
bins discriminating between interictal and preictal references
are selected as an observation. Then, the set of observations
from the last 5 min is compared with two reference sets of
data points (interictal and preictal) using a variational Gaussian
mixture model (GMM) of the data, and a combined index is
computed. Comparing this index with a patient-specific thresh-
old, an alarm sequence is produced for each channel. Finally,
a seizure prediction alarm is generated according to channel-
based information. The proposed method was evaluated using
∼40.3 h of scalp EEG recordings from 6 patients with total of
28 partial seizures. A high sensitivity of 95% was achieved with
a false prediction rate of 0.134/h and an average prediction
time of 22.8 min for the test dataset.

I. INTRODUCTION

Epilepsy affects almost 1% of the world’s population and

is associated with recurrent, unprovoked epileptic seizures

resulting from a sudden disturbance of brain function, char-

acterized by abnormal firing of cortical neurons recruiting

neighboring cells into a critical mass. Medication and surgery

fail to satisfactorily control seizures in ∼25% of affected

patients [1]. A reliable seizure prediction system based

on electroencephalogram (EEG) would enable clinicians to

control seizures by administering therapeutic agents as early

as possible and improve the quality of life and safety for

patients with epilepsy. Due to the susceptibility of sur-

face EEG to different types of artifacts and noise, most

seizure prediction studies have been based on intracranial

recordings [2]–[5]. However, to develop seizure forewarning

techniques more clinically applicable, methods based on

scalp EEG have also been the subject of research [6], [7].

Iasemidis et al. [4] proposed an adaptive algorithm to

predict seizures based on the convergence of the short-term

maximum Lyapunov exponents of the critical electrodes in

the preseizure phase. Estimating the optimal settings using

a training set, they reported a sensitivity of 82.6%, a false

prediction rate of 0.17/hr, and an average prediction time of

100.3 min for a test set of intracranial recordings. In another

study [2], a decrease in similarity between the current EEG
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dynamics and an interictal reference was reported during the

preseizure period for depth recordings. This method was later

tested on surface EEG as well, revealing ∼96% sensitivity

and an average prediction time of 7 min (unspecified false

prediction rate) [6]. Recently, an algorithm based on autore-

gressive modeling of EEG [5] was proposed for predicting

epileptic seizures.

In this paper, we propose a seizure prediction algorithm

based on scalp EEG zero-crossing interval analysis, employ-

ing variational mixture of Gaussians to compare EEG pat-

terns with interictal and preictal references. We then compare

this method to our previously developed zero-crossing based

approach [8]. Sections II and III are devoted to methodology

and results, and the paper is concluded by Section IV with

some directions for future work.

II. METHODS

The evolution of partial (focal) epileptic seizures can be

explained based on a long-term gradual preseizure change

(or a cascade of changes) in the brain dynamics. Indeed,

there exists a preictal state defined as the transition from

the interictal state to the ictal, which is supported by some

clinical evidence [1]. In this section, the details of our

proposed patient-specific seizure prediction method, which

is based on recognizing preictal changes, are described.

A. EEG Zero-Crossings

In this study, instead of conventional time-delay embed-

ding [9], EEG dynamics are analyzed based on the time

intervals between successive positive zero-crossings (i.e.,

passing from negative to positive values) as a specific form

of interspike intervals [10], [11], which are more meaningful

in neurophysiological studies compared to amplitude infor-

mation [12]. One advantage of the zero-crossing approach is

its robustness against amplitude noise [2]. Accordingly, since

surface EEG contains different types of noise and artifacts,

this approach removes the noise components to some extent.

Moreover, in this approach, dynamical information can be

extracted using a significantly lower amount of data.

Analyzing EEG epochs (here, 30-second segments with

50% overlap), let Tℓ be the time of the ℓth positive zero-

crossing in a particular epoch after detrending (i.e. removing

the mean value and any linear trends) where ℓ = 1, 2, . . . , L ;

then, we can represent this epoch with a set of zero-crossing

intervals as I = {Iℓ| Iℓ = Tℓ+1 − Tℓ}. The histogram of I

in each epoch is then used to characterize EEG dynamics.

Constructing this histogram, we adopt a varying-bin-width

scheme, in which the histogram bins are selected such that
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the spectral content of EEG is reflected in the constructed

histogram. Choosing the frequency band from 1 to 30 Hz (in

agreement with the frequency range reported in literature for

seizure onset [13]), it is split into nonoverlaping frequency

subbands of 1 Hz. Let [f
l
, f

l+1
] present the lth subband; then,

the lth bin of the histogram is defined as [1/f
l+1

, 1/f
l
].

Since the sampling frequency Fs is finite (here, 256 Hz),

this approach may result in some bins which are always

empty. This can be tackled using a merging approach recently

proposed by our group [8].

Constructing the histogram of I for each EEG epoch,

we represent that epoch with a d-dimensional vector Φ =
[ϕ1, ϕ2, . . . , ϕd]

T , where ϕi = ni/(L − 1), i = 1, 2, . . . , d,

and ni is the number of positive zero-crossing intervals

falling in the ith bin of the histogram. Choosing the minimum

acceptable bin width of ∼12 ms (i.e., 3 sample points) in

the merging process, a histogram with 13 bins is obtained

for each epoch.

B. Discriminative Histogram Bins

Constructing the vector Φ, the histogram bins discrimi-

nating between the interictal and preictal states are selected

based on the distribution of ϕi in the interictal and preictal

reference intervals, defined for each patient specifically.

Considering a particular seizure in the training dataset,

the five-minute EEG segment ending at the onset of the

seizure is selected as the preictal reference and a fifteen-

minute interval far from the seizure (at least 60 min before

the onset) is chosen as the interictal reference. Computing

ϕi for all epochs of each reference, we obtain two sets

of data points for the ith histogram bin. Let Φ̃i
int and

Φ̃i
pre be the resulting datasets for the interictal and preictal

references, respectively. Then, we employ the Kolmogorov-

Smirnov test [14] to compare the distributions of the values

in the two datasets, where the null hypothesis is that Φ̃i
int

and Φ̃i
pre are from the same continuous distribution. The

histogram bins rejecting the null hypothesis are chosen as

the discriminative bins and used in prediction of epileptic

seizures. The significance level of 5% is used to reject the

null hypothesis. In the case of multiple training seizures, the

bins rejecting the null hypothesis for all seizures are selected.

C. Variational Mixture of Gaussians

To monitor the EEG patterns and generate alarms for

upcoming seizures, we have developed a method based on

Gaussian mixture models (GMMs) [15]. Given an observa-

tion x, the mixture of Gaussian densities can be written as

a weighted sum of Gaussians

p(x|θ) =

M∑

m=1

πmN (x|µm,Σm) , (1)

where θ = {µm,Σm, πm} represents model parameters,

and M is the number of Gaussians (model components).

µm and Σm are the mean and covariance matrix of the

mth Gaussian density, respectively, and parameters {πm}
are mixing coefficients satisfying 0 ≤ πm ≤ 1 along with∑

m πm = 1. We may introduce an M -dimensional latent

variable z corresponding to the observed data point x, where

zm ∈ {0, 1} and
∑

m zm = 1. Then, we can rewrite the

mixture distribution in terms of marginalization over the

latent variable

p(x|θ) =
∑

z

p(x|z, {µm,Σm})p(z|{πm}) (2)

where p(x|z, {µm,Σm}) =
∏

m N (x|µm,Σm)
zm and

p(z|{πm}) =
∏

m(πm)zm . Considering the latent vari-

able, the parameters of the GMM can be estimated using

maximum likelihood framework. However, the traditional

maximum likelihood GMM suffers from over-fitting and

singularities [15]. Therefore, in this study, we adopt the vari-

ational GMM in which the posterior distributions over model

parameters are approximated (instead of point estimation of

their values) through a fully Bayesian framework. Let X and

Z be the sets of observations and the corresponding latent

variables respectively. Then, defining prior distributions over

all parameters, the variational posterior distribution q(Z, θ)
which approximates the true posterior p(Z, θ|X) is computed

by maximizing the functional L(q) as the lower bound of the

log marginal likelihood ln p(X) (also known as the model

evidence) [15]

L(q) =
∑

z

∫
q(Z, θ) ln

p(X,Z, θ)

q(Z, θ)
dθ (3)

where the approximating distribution is restricted to the

factorized form q(Z, θ) = q(Z)q(θ). Then, the variational

posterior distribution over each parameter is computed iter-

atively through the variational equivalent of the expectation-

maximization algorithm [15].

Once the discriminative histogram bins are determined, we

are able to monitor the EEG patterns and generate alarms

predicting upcoming seizures based on variational GMM of

data. Let D be the number of selected bins (i.e., bins rejecting

the null hypothesis) and {i∗l } indicate the corresponding

set, where l = 1, 2, . . . , D. Each EEG epoch can be then

represented by x = [ϕi∗
1
, ϕi∗

2
, . . . , ϕi∗

D
]T .

After computing xk for the kth EEG epoch (current epoch

in real-time processing), the current observation set is defined

as Xk = {xk−Nk+1, . . . ,xk−1,xk}, where Nk is the total

number of epochs in the last 5 min of the EEG (including

the current epoch). This set of observations is then compared

with the interictal (Xint) and preictal (Xpre) reference sets.

Xpre is simply the set of x computed for all epochs of the

preictal reference. Selecting Xint, we choose a more local

interictal reference (closer to the current epoch) instead of the

interictal reference defined in Section II-B in order to avoid

false alarms resulting from high variability of the interictal

patterns over time. This 5-min interictal reference is updated

every hour in the case of long recordings. For discontinuous

recordings, the first 5-min of each recording is considered as

the reference. We define the size of Xint and Xpre as Nint

and Npre respectively.

One major advantage of the variational GMM over the

traditional GMM is a tradeoff between the model complexity

and fitting data. This feature provides the possibility of
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keeping the effective model components, while eliminating

those with small expected mixing coefficients, E(πm), which

is the basis for comparison between the current epochs and

references in our proposed method. Measuring the similarity

between current observations and preictal reference set using

the GMM, we set the number of model components (M )

to 2 and define X = {Xpre,Xk}. The similarity index for

the kth epoch, termed ŝk, is then determined as follows.

After convergence, if the number of (effective) components

is one, it shows that Xpre and Xk are significantly similar,

and therefore, ŝk = 1; otherwise, ŝk = Jpre × (1 − ζpre)
where Jpre and ζpre are the matching and isolation measures

respectively. Measure Jpre shows how matched the two

clusters resulting from GMM are with the original sets

Xpre and Xk. Suppose N ′

k is the maximum number of data

points from Xk which fall in a single cluster after GMM

convergence. Also, let N ′

pre be a similar quantity for Xpre.

Then, Jpre =
√

(N ′

k/Nk) × (N ′

pre/Npre).

Measure ζpre reveals how isolated Xpre and Xk are.

This measure is calculated using the labels of the l nearest

neighbors of each data point x ∈ X [16]. That is, ζpre =
1

N

∑
x

ϑl(x) where ϑl(x) is the fraction of the l nearest

neighbors of x that have the same label as x, and N is size

of X. In the case of multiple training seizures, the average

of ŝk over all preictal references is considered as the final

similarity measure.

Similarly, we compare Xk with Xint to compute the

dissimilarity index d̂k. Defining X = {Xint,Xk} and

setting the number of GMM components to 2, if there exists

only one effective component after convergence, d̂k = 0.

Otherwise, we define d̂k = Jint × ζint, where Jint and

ζint are the matching and isolation measures computed using

Xint. By definition, both ŝk and d̂k are between 0 and 1.

D. Seizure Prediction Alarm

Having calculated the similarity and dissimilarity indices,

a combined index for the kth epoch is defined as

Ck = median{ĉk, ĉk−1, . . . , ĉk−Nk+1}, (4)

where ĉk = (ŝk × d̂k)0.5 and Nk is the number of epochs

over the last 5 min. In the preictal interval, Ck increases since

both ŝk and d̂k increase, i.e. observed data points get closer to

the preictal reference and more distant from interictal. Then,

we define the following cumulative measure, comparing the

combined index with threshold ηc,

Uk = max

{
0, εk

[
1 +

1

η2
c

(1 − H(εk))

]
+ Uk−1

}
, (5)

where εk = Ck − ηc, 0 ≤ ηc ≤ 1, and H(·) is the step

function. It is worth noting that the proposed cumulative

measure is equivalent to the standard cumulative sum [17]

when εk ≥ 0. However, if εk < 0, εk is magnified by (1 +
1/η2

c) and the sum decreases significantly. This reduces the

number of false alarms, especially when ηc is small. Finally,

the alarm sequence is generated by γk = 1 − exp(−ηsUk),
where 0 ≤ ηs ≤ 1. Now, considering all EEG channels

together, the γ values from all channels at the same epoch

are sorted in descending order, and the first P values are

averaged. Let γ̃k be the resulting average for the kth epoch;

the seizure prediction alarm Γk is then generated as

Γk =

{
1, if γ̃k ≥ ηa

0, otherwise
(6)

Parameters ηc, ηs, and ηa are determined specifically for each

patient during the training step.

III. RESULTS

A. Epilepsy Data

With ethics approval, a scalp EEG dataset provided by

the EEG department of Vancouver General Hospital (VGH)

from 6 patients with focal epilepsy (4 females and 2 males)

was utilized to evaluate the performance of the proposed

seizure prediction algorithm. The multichannel EEG data

included ∼40.3 h (6.71±2.71 h per patient) with total of

28 seizures (3 to 8 seizures per patient) and were acquired

in the seizure investigation unit based on the International

10-20 system, bandpass-filtered between 0.1 and 100 Hz,

and sampled at 256 Hz. In this work, we used a bipolar-

montage scheme including 15 channels. To apply a moving-

window analysis, each EEG recording was segmented into

thirty-second epochs with fifteen-second overlap.

B. Seizure Prediction Results

Evaluating the proposed method, surface EEG recordings

from each patient were divided into the training and test sets.

The training set was used to extract the interictal and preictal

references (Section II-B) and determine the discriminative

histogram bins. Moreover, parameters ηc, ηs, and ηa were

determined for each patient such that the algorithm achieved

the highest performance (high sensitivity along with a low

false prediction rate) for the training dataset of that patient.

Overall, the test set included ∼29.9 h (4.98±2.14 h per

patient) with total of 20 seizures (2 to 6 seizures per patient),

and the training set consisted of ∼10.4 h (1.73±0.63 h per

patient) and 8 seizures (up to 2 seizures per patient).

Figs. 1(a)-1(d) present different measures calculated for

channel T5-O1 of Patient 6 for the interval from 25 min

before to ∼2 min after the electrographic seizure onset. As

shown, the average of similarity index increases noticeably

10 min before the onset. The dissimilarity index also gets

greater in average as approaching to the seizure, although

fluctuates considerably. As the result, the combined index

shows a significant increase and surpasses threshold ηc (here,

0.25) during the preictal interval, and alarms are generated

(ηs = 0.2). Fig. 1(e) shows γ̃k for the same interval of

the same patient (for P = 3), revealing that the proposed

algorithm is able to predict the upcoming seizure ∼10 min

earlier (ηa = 0.25).

Results of the proposed seizure prediction method, applied

to EEG recordings of all patients, are summarized in Table I

for both the training and test sets. To better evaluate this

method, we also compared it with our previously developed

algorithm which compares the distribution of discriminative
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Fig. 1. Different measures calculated for an EEG interval from Patient 6 (ηc = 0.25, ηs = 0.2, and ηa = 0.25): (a)-(d) present respectively d̂k , ŝk , Ck ,
and γk for channel T5-O1, and (e) shows γ̃k obtained using the top 3 channel alarms (P = 3). Time axis is scaled with respect to the electrographic
seizure onset.

TABLE I

RESULTS OF THE PROPOSED VARIATIONAL GMM BASED METHOD IN

COMPARISON TO THE METHOD BASED ON KL DIVERGENCE.

Method
Training Set Test Set

SE FPR APT SE FPR APT

Variational GMM 100 0.096 18.1 95 0.134 22.8
KL-Based [8] 75 0.096 15.2 80 0.167 24.6

SE: sensitivity (%); FPR: false prediction rate (/h); APT: average
prediction time (min).

TABLE II

VARIATIONAL GMM BASED METHOD RESULTS PER PATIENT (TEST SET).

Patient 1 2 3 4 5 6

Type of Epilepsy TLE TLE TLE TLE eTLE TLE
Sensitivity (%) 66.67 100 100 100 100 100

FPR (/h) 0 0 0 0.590 0 0.203
APT (min) 24.8 25.2 28.4 8.9 23.5 20.2

TLE: temporal lobe epilepsy; eTLE: extratemporal lobe epilepsy.

bins estimated over the last 5 min of EEG with the preictal

and interictal reference distributions using Kullback–Leibler

(KL) divergence [8]. For both methods, the top 3 channel

alarms at each epoch (P = 3) were used to generate the final

alarms (i.e., Γk=1). In this evaluation, a prediction alarm was

considered to be true if a seizure happened within 40 min

after the alarm; otherwise, it was labeled as a false alarm.

The successive alarms with an interval less than 40 min

were assumed as a single alarm. The prediction time was

defined as the time difference between the alarm and the

electrographic seizure onset. Alarms with prediction time

of less than 3 min were ignored and the corresponding

seizures were considered as missed seizures, since there

would not be sufficient time to prevent/control seizures under

this condition. As shown in Table I, the proposed method

predicted ∼95% of the test seizures with a false prediction

rate of 0.134/h and an average prediction time of 22.8 min.

Comparison of the two methods reveals that GMM-based

approach is significantly superior to the KL-based method.

Table II shows the results of the proposed variational GMM-

based method for test data of each patient.

IV. CONCLUSION

An epileptic seizure prediction method based on varia-

tional GMM of the zero-crossing intervals in scalp EEG was

proposed. Applying the algorithm to EEG recordings from

6 patients, 19 out of 20 test seizures were predicted with an

average prediction time of 22.8 min and a false prediction

rate of 0.134/h, favorably comparing with previously pub-

lished approaches. To better assess the performance of the

proposed method, we will, in the future, apply the algorithm

to a set of long-term EEG recordings from a larger number

of patients and will test it against random predictors.
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