
  

  

Abstract— Neuronal populations in the brain achieve levels 
of synchronous electrophysiological activity as a consequence of 
both normal brain functions as well as during pathological 
states such as in epileptic seizures. Understanding the nature of 
this synchrony and the dynamics of neuronal oscillators in the 
brain is a critical component towards decoding such complex 
behaviors. We have sought to achieve a more in-depth 
understanding of the dynamics underlying the evolution of 
seizures in limbic epilepsy by analyzing recordings of local field 
potentials from three subcortical nuclei that are part of the 
circuit of Papez in a kainic acid rat model of temporal lobe 
epilepsy using the empirical mode decomposition technique. The 
empirical mode decomposition allows for an adaptive and non-
linear decomposition of the local field potentials into a series of 
finite oscillatory components. We calculated the frequencies, 
power, and measures of phase synchrony of these oscillatory 
components as seizures evolve in the brain and discovered 
patterns of phase synchrony that varies between the different 
stages of the seizures.  

I. INTRODUCTION  

Epilepsy is a brain disorder involving recurrent and 
spontaneous interruptions of normal brain activity, called 
epileptic seizures (Fisher et al., 2005). About 50 million 
people worldwide have epilepsy. Synchronization between 
elements of the brain has been the most commonly used 
measure for accessing the dynamics of the brain. 
Traditionally, it has been thought that pathologically 
synchronized activity may underlie seizures; however, 
recently there have been studies that have shown that there is 
desynchronization in the brain during seizures (Netoff and 
Schiff, 2002; Gutkin et al., 2005; Schindler et al., 2007). 
Controversies have surfaced when considering the 
mechanisms by which seizures arise and the relevance of 
high frequency oscillations in seizure pathology. Some 
researchers have suggested that ictogenesis in focal 
epilepsies start with synchronization in an apparent focus 
that then spread to other brain structures (Franaszczuk et al., 
1998; Jouny et al., 2010). Others have shown that ictogenesis 
in focal epilepsies involve specific cortical and subcortical 
networks (Bartolomei et al., 2001; Spencer, 2002; Gotman, 
2008).  The goal of the study was to explore the dynamics 
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underlying status epilepticus in a kainic acid rat model of 
temporal lobe epilepsy (TLE) using a novel analysis 
technique that allows for decomposition of 
electrophysiological signals into finite components. 

 

II. METHODS 

A. Surgery 
Rats were anesthetized by a mixture of Ketamine (70 mg 

/kg) and Xylazine (2 mg/ kg) delivered intraperitoneally.  All 
procedures were performed in a Kopf stereotactic frame 
(KOPF Model 900, CA, USA).  Stereotactic targets were 
calculated using a stereotactic rat brain atlas (Paxinos and 
Watson, 2004). Lambda, Bregma and Sagittal sutures were 
used as landmarks to navigate to the desired stereotactic 
points. The skull was perforated using a high speed 
stereotactic drill (Micromotor TM Drill, Stoelting Co, IL 
USA) with 1.2-2 mm diameter drill tips. Seven small burr 
holes were drilled: four were for the positioning of anchor 
screws and three for the placement of electrodes. Bipolar 
electrodes surrounding a single stainless steel injection 
cannula in one integrated electrode assembly (C315G-MS 
303: PlasticsOne, Roanoke, VA, USA) were stereotactically 
implanted into the CA3 region of the left hippocampus (-3.5 
mm Bregma, 2.8 mm lateral, 3.7 mm deep). Bipolar 
recording electrodes (without cannula) were implanted into 
the contralateral hippocampus (-3.5 mm Bregma, -2.8 mm 
lateral, 3.7 mm deep) and anteromedial thalamus (-1.8 mm 
Bregma, 0.3 mm lateral, 6.1 mm deep). The electrodes were 
then fixed to the screws and the skull using acrylic dental 
cement. 

B. Analysis of intracranial EEG recordings 
Following surgery, intracranial EEG signals were recorded at 
a sampling rate of 2 kHz. Each experiment involved 
recording one half hour of baseline activity followed by the 
injection of 3 – 5 nmol kainic acid into the CA3 region of the 
left hippocampus (n = 6) to induce epileptogenesis. After 
injection, the internal cannula insert was withdrawn and a 
stainless steel insert was threaded through the cannula to 
provide one side of the recording pair. The reference 
electrode used was the skull stabilization screw most 
proximal to the electrode assembly. The raw signals from 
each of four recorded channels (namely intracranial 
recordings from the left and the right hippocampii and the 
anteromedial nucleus of thalamus as well as a subdural 
electrode covering the hemisphere contralateral to 
epileptogenic chemical application to provide surface EEG) 
were decomposed into a series of intrinsic mode functions 
(IMFs) using the method of empirical mode decomposition 
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Figure 1: Phase amplitude dispersion at five different 
phases of seizure evolution measured at the focal 
hippocampus (A) and at the anteromedial thalamus (B). 

(EMD). The EMD can be characterized as an adaptive, non-
linear decomposition that results in a series of intrinsic mode 
functions (i.e., IMFs) that together comprise the underlying 
oscillations (or basis functions) within a dataset (Huang et 
al., 1998; Sweeney-Reed and Nasuto, 2007).  The basis 
functions are determined from the dynamics of the signal 
itself which may be non-linear and/or non-stationary (Fine et 
al., 2010). 
After a series of intrinsic oscillators is obtained in this way, 
the instantaneous phase was calculated using the Hilbert 
analytic signal method (Gabor, 1946).  This method is 
appropriate in this case because the IMFs represent 
narrowband signals.   Unfiltered, multi-component signals 
will yield a trajectory in the complex plane that has multiple 
centers of rotation.  For an unambiguous determination of 
phase, the complex trajectory of the analytic signal must 
have only a single center of rotation which the EMD 
technique provides.  Once the IMFs are obtained from each 
channel within a data segment, it is desirable to determine 
the strength of the relationships between the oscillators.  To 
accomplish this, the mean phase coherence (Mormann et al., 
2000) was calculated to obtain a square symmetric matrix 
relating the phase of each oscillator obtained from EMD 
analysis.  This matrix of phase relationships was then treated 
to eigenvalue decomposition.  This method (Allefeld et al., 
2007) allows one to extend a bivariate measure of phase 
coherence into a multivariate measure thereby permitting 
measures of synchrony across multiple oscillators.  
Essentially, this decomposition compares the strength of 
phase relationships between oscillators and clusters them 
according to mean fields.  For any eigenvalue-eigenvector 
pair, a phase correlation value may be assigned as the 
strength of the connection of a given eigenvalue (unique for 
a given IMF) and an eigenvector (unique for the entire set of 
IMFs obtained from all channels).  Furthermore, each 
eigenvalue is ordered, with the largest eigenvalue 
representing the most strongly correlated cluster with the 
participation of each oscillator in a given cluster quantified 
by the value of the eigenvector.  Those eigenvalues above 
one are considered significant and the components of their 
eigenvectors identify participation in the corresponding 
cluster. 
 Given an ensemble of coupled oscillators, in order to 
analyze the group’s collective dynamics and, in particular, to 
describe synchronization processes, it is convenient to 
introduce the complex cluster variable Z: 

   Z = ∑ =
=

N
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where Φj is the phase of the jth  oscillator and N is the 
number of oscillators. The quantities r and φ denote the 
cluster amplitude and cluster phase at time t, respectively. 
The variable r is also known as mean phase coherence  and 
phase amplitude coherence.  The cluster amplitude varies 
between 0 and 1.  As the ensemble becomes more 
synchronized, the cluster amplitude increases towards unity. 
The difference in instantaneous cluster amplitude, Δr, was 
calculated for the length of the entire recording.  The 

variance of Δr (also known as the phase amplitude 
dispersion) was then calculated using a 100 ms moving 
window. All the IMFs extracted from the same recording 
channel were analyzed using this measure in order to access 
the level of synchrony within a recording channel. As the 
oscillators become more coherent in phase, the phase 
amplitude dispersion should decrease.   

 

III. RESULTS 
 
Local field potentials (LFPs) were recorded in the 

anesthetized rat from three locations implicated in limbic 
seizures as described in the Method’s section.  Recordings 
were made at each of electrographic activity at each of the 
three intracranial electrode sites prior to (baseline) and after 
kainic acid (KA) injection. Since seizures are generally 
thought to represent aberrantly synchronized neural activity, 
we sought to develop a set of algorithms to accurately access 

and quantify this synchrony. Empirical Mode Decomposition 
(EMD) was used to decompose the raw time series signals 
into a finite collection of oscillators known as intrinsic mode 
functions. The Hilbert analytic signal was constructed for 
each IMF in order to calculate the instantaneous phase for 
each of the IMFs.  Moving averages of IMF frequencies 
were calculated by taking the absolute mean of the time 
derivative of the instantaneous phase of each IMF over a 1 
sec interval.  In order to better access the nature of the 
synchrony occurring during the seizure, the power of the 
IMFs extracted from each recording site was calculated in 
order to determine if the high energy activity seen during the 
ictal period could be attributed to an increase in the power of 
individual IMFs. The Hilbert analytic signal was constructed 
for each IMF in order to calculate the instantaneous phase 
for the IMFs.  The instantaneous phases for all IMFs that 
belong to the same recording site were then used to calculate 
phase amplitude dispersions as a way of quantifying phase 
synchrony within the site.  This was done for each of the 
three recording locations. 
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We created and normalized 5 partitions for each ictal event 
in all post KA injection recordings: pre-ictal, initiation, mid-
seizure, termination, and post-ictal. Phase amplitude 
dispersions were averaged across all partitions from all post 
KA injection recordings. One way ANOVA (n = 21 seizures) 
reveals that the phase amplitude dispersion was significantly 
reduced during the middle phase of seizures in all three 
recording. Figure 1 show the phase amplitude dispersion for 
the focal hippocampus and thalamus. There is a decrease in 
the phase amplitude dispersion as one approaches the middle 
of the seizure followed by an increase as one moves away 
from the middle of the seizure towards seizure termination. 
This pattern of dynamics suggests an increase in the 
synchrony of electrophysiological activity within each 
structure during a seizure. This would suggest that one 
should characterize seizures as hypersynchronous events. 

Phase amplitude dispersions were averaged across all 
partitions from all post KA injection recordings. In order to 
get the complete picture of the dynamics occurring during a 
seizure, synchrony across recording sites was evaluated 
using the phase locking value (PLV) between pairs of sites. 
IMFs from all the recording sites were clustered to find 
groups of two or more oscillators whose dynamic behavior 
may be correlated.  Significantly synchronized clusters were 
identified through eigenvalue decomposition. 
Synchronization patterns were consistent across seizures in 
individual animals with commonality of patterns found 
between animals as well. During ictogenesis, low frequency 
synchronization patterns were observed. In contrast, patterns 
of high frequency synchronization were consistently 
detected. 

 

IV. CONCLUSION 
 

The aim of this study was to investigate the pattern of 
dynamics which underlay spontaneous ictal activity during 
status epilepticus in the kainic acid rat model of temporal 
lobe epilepsy. We employed the method of empirical mode 
decomposition (EMD) in our analysis because it is an 
adaptive decomposition which does not require linearity or 
stationarity of the dataset unlike Fourier analysis. Another 
advantage to using EMD is that it decomposes the original 
signal into a finite set of components known as the intrinsic 
mode functions (IMFs). This gives us more control over 
ways of accessing the behaviors of these oscillators during 
both normal activity and as a consequence of diseased states.  
We believe that a much more accurate multi-site 
understanding of brain synchrony is an essential element to 
providing appropriate stimulation for modulation of brain 
dynamics to treat epileptic seizures. 
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