
  

  

Abstract— Each year more than a third of elderly fall in the 

United States. To address this problem we are developing an 

acoustic fall detection system based on a microphone array. The 

main task of the acoustic system is to detect all the falls that 

occur in an indoor environment while producing as few as 

possible false alarms. One of the challenges of this task is to 

accurately locate where the fall signal comes from so that 

beamforming can be applied to improve the recognition of fall 

signals. In this paper we describe a simple fall signal location 

procedure that proved effective in preliminary testing.  

I. INTRODUCTION 

alls are one of the most serious concerns of older adults. In 

spite of extensive fall prevention programs [1], about 13 

million older adults fall each year in the United States, which 

results in an estimated hospitalization cost of about $9 billion 

[2]. About a third of the people who fall suffer severe injuries, 

such as fractures and head trauma [1], which can render them 

unable to rise or to ask for help. If the person lives alone, a fall 

might result in lying on the floor for a prolonged period of 

time which can cause hypothermia, dehydration, pressure 

sores, or rhabdomyolosis (destruction of skeletal muscle) [3]. 

By alerting the care giving personnel early using an 

unobtrusive automated fall detection system, we reduce the 

recovery time and save lives [4]. 

The number of falls in older adults is most likely higher 

than the one mentioned above, due to unreported falls [5]. An 

increasing frequency of uneventful, hence unreported, falls 

might be an indicator of physical decline, and of an imminent 

serious fall [5]. By recording the unreported falls using an 

unobtrusive automatic fall detection system, we can inform 

the caregiver about the necessity of a fall prevention 

intervention. As stated by Robinson et al. ([5], pg. 687) 

"detecting falls is likely to reduce the likelihood of future 

falls." 

The fall detection methods found in the literature are based 

on two types of devices: wearable and non-wearable. The 

wearable devices tend to be easier to deploy, while the 

non-wearable ones tend to be less obtrusive [6]. The wearable 

devices are, in general, rejected by older people who perceive 

them as obtrusive [7]. Moreover, they are not effective in 

situations where they can’t be worn, such as taking a shower 

or getting out of bed at night time. 
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Acoustic sensors have previously been used in habitat 

monitoring [8-13]. In previous papers [14-17] we tried 

various configurations and algorithms of an acoustic human 

fall detection system (FADE) based on a linear array of 

microphones. In [17] we investigated a circular microphone 

array configuration that proved to greatly increase the fall 

detection rate. However, noise and reverberation still present 

a great challenge for sound recognition. To better deal with 

environmental challenges in source recognition, we need to 

identify the source location more accuracy to increase the 

effectiveness of beamforming from the microphone array 

signals.  In this paper we propose to use a simple adaptive 

windowing procedure that will detect the part of the signal for 

providing better localization accuracy.  The fall classification 

results of using the proposed localization procedure in fall 

data measurements will be demonstrated.  

II. SYSTEM ARCHITECTURE 

The acoustic fall detector consists of a circular array of 8 

microphones. Each microphone has a mini amplifier and is 

mounted on a Cana Kit UK009 board. The microphones are 

installed on a plywood board in a circular pattern with a 25cm 

radius, which is determined based on the simulation results 

presented in [17]. The microphone array board was hanged 

vertically on a wall about 1.5m above the floor with the 

microphone sides pointing away from the wall. A data 

acquisition card is used for converting the analog signals into 

digital data. The microprocessor board works as a computer 

to process and analyze the digital data in real-time. The 

system architecture is shown in Fig. 1. 

 
Fig. 1.  The acoustic fall detector architecture 

The working hypothesis for the fall detection is that the 

person is alone in the apartment room hence only moving 

person has to be tracked. A motion detector is used to detect if 

there is motion performed during a given interval (one 

minute) after a fall event is computed as likely. If there is 

motion after a fall is detected, then this event is cataloged as a 

false alarm and will not trigger the alarm to the caregiver. To 
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preserve the privacy of the resident, the recorded sounds will 

be internally processed on the microprocessor and only an 

external fall signal (email or pager) will be sent to the 

caregiver. 

III. STUDY METHODOLOGY 

A. Problem description 

The acoustic fall detection system consists of 3 processing 

steps: 1) sound source localization (SSL), 2) beamforming 

and 3) fall recognition. The purpose of beamforming is to 

increase the signal-to-noise ratio (SNR) of the microphone 

signals so as to improve the fall recognition rate in highly 

noisy environments. However, the effectiveness of SNR 

improvement given by the beamformer is strongly dependent 

on the estimation accuracy of the SSL. Poor estimate of the 

source location can degrade the enhancement on the 

microphone signals, and even obscure them. Challenging 

acoustic environment that has high noise level and large 

reverberation effect often degrades the estimation accuracy of 

the SSL. The purpose of this paper is to investigate how we 

can improve the estimation accuracy of the SSL by 

processing a better segment of the signal. The motivation 

comes from the fact that the fall signal is non-stationary and 

using different portions of the signal could yield different 

results. Now, the problem is which portion of the data should 

be processed for the SSL for achieving better estimation 

accuracy.  

B. The definition of the problem 

The window formulation is used for the selection of the 

data segment. Let us denote a data window by �(�; �, �) 
where �  is the time index, �  is the center position of the 

window and � is the window size. In this study, we choose 

the commonly used Hamming window function. In this case �(�; �, �) is given by  �(�; �, �) =
          �0.54 − 0.46 cos �������� ,           � − �� ≤ � ≤ � + ��0,                                                  otherwise              &      (1) 
where � is assumed to be even. Let us represent the signal 

from the ith microphone by '((�), � = 0,1, … , + − 1, , =0,1, … , - − 1,  where +  is the number of data points in a 

microphone channel of a sound file and - is the number of 

microphones in the array. The windowed signal is the product 

of the microphone signal and the window function defined by 

(1), i.e. '.((�; �, �) =
              /'((�) ∙ �(�; �, �),               � − �� ≤ � ≤ � + �� 

0, 0 ≤ � < � − ��  2�3 � + �� < � ≤ + − 1  &            (2)            

'.((�; �, �) is the windowed signal from the ith microphone 

with the windowing parameters � and �. Since a sound signal 

may occur at any time position in a sound file (assuming only 

one sound even is contained in each file), it is necessary to set 

a time reference for each file so that the window position can 

be measured with respect to the reference. The time reference,  

�4, is found by the proposed method described below. 

Suppose we have acoustic signals from -  microphone 

channels of a fall. Fig.2 shows a 500ms-long acoustic signal 

of a typical fall in channel 1. 

 
Fig.2. A typical acoustic fall waveform 

 

The time reference is selected as the position where the 

largest amplitude occurs in the signal envelope of the 

strongest channel. The strongest channel is determined by 

comparing the signal energies among the channels and the 

waveform envelope is obtained by the Hilbert transform. The 

energy of the ,th microphone signal '((�) is 5( = ∑ '((�)�7��89:   , = 0,1, … , - − 1 .         (3) 

The strategy for determining the strongest channel ; is 
                                       ; = 2<= max( 5(  .                            (4) 

The envelope A(�) of 'B(�) is given by the magnitude of the 

analytic signal of 'B(�) , which is A(�) = C'B(�)�  + 'BD (�) �  .                     (5) 

In (5), 'BD (�) is the Hilbert transform of 'B(�). The Hilbert 
transform is implemented by using a 32-point 
Parks-McClellan FIR filter [18]. Therefore, the time 

reference �4 is chosen as 

                                  �4 = 2<= max8 A(�)                             (6) 

In this study, we shall examine the performance of P 

window positions relative to the reference: �4(E) = �4 + ∆T ∙HI ∙ J, J = 0, … , K − 1 . Note �4(:)
 is the same as the time 

reference. ∆T is the time interval increment in second and HI 

is the sampling frequency. 

    We also examine the performance of Q window sizes: �(L), M = 0,1, … , N − 1. Now we can describe the procedures 
for evaluating the fall recognition performance with respect 

to the window parameters �4(E)
 and �(L) below: 

1) For each sound event, use '.(O�; �4(E), �(L)P , , =0,1, … , - − 1 to obtain the 3D position estimate of the 

sound source QD(�4(E), �(L))  by the SRP-PHAT 
algorithm [17].  

2) Use '((�) , , = 0,1, … , - − 1  to compute the 

delay-and-sum beamformer output R̂(�; �4(E), �(L)) 
based on QD(�4(E), �(L)). 

3) Perform the Mel-frequency cepstral coefficients 
(MFCCs)-based nearest neighbor classifier [17] with 

varying thresholds on R̂(�; �4(E), �(L))  for all sound 
events to compute a set of pairs of detection rate 

dr( �4(E), �(L))  and corresponding false alarm rate 

fa(�4(E), �(L)).  
4) Obtain the receiver operating characteristic (ROC) 

curve, ROC( �4(E), �(L)), by drawing the dr with respect 
to the fa. 
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    The criteria to find the optimum window parameter is area 

under the ROC curve, denoted by AUROC( ∙). Hence the 

optimum window parameter (Ĵ, MT) is              
                  (Ĵ, MT) = 2<= maxE,L UVWXY ��4(E), �(L)�,              (7) 
                    J = 0,1, … , K − 1;  M = 0,1, … , N − 1 .                 
Due to the large number of combinations of window positions 
and sizes to optimize from, we assume that the performance is 
dominated by the window position. Hence, 

       Ĵ = 2<= maxE UVWXY ��4(E), �� , J = 0,1, … , K − 1 . (8) 

where L is a nominal window size. 

  MT = 2<= maxL UVWXY ��4(ET), �(L)� , M = 0,1, … , N − 1 .  (9) 

We denote the optimized window size �(LT) by �Z.                                      
C. Data description and experimental procedures 

The dataset for this study consists of 12 falls and 12 
non-falls. They were acquired by a trained stunt actor under 
the instructions of a geriatric nurse in our laboratory. The 
dataset contains many possible fall types such as a forward 
fall, a backward fall, a sideway fall, etc. and typical daily 
non-fall activities such as knocking, clapping, dropping an 
object, etc. Each type of fall or non-fall is measured in a 

500ms-long data record at a sampling rate HI =20 KHz using 
the microphone array.  
    The 8-folded cross-validation is performed on the dataset 
to generate the ROC curves for different window positions 
and window sizes. The fall recognition performance is 
examined through the ROC curves.  

IV. RESULTS 

A. The effect of window position 

We investigate the performance of fall recognition with 

different window positions based on the experimental results 

on the real data measurements. The nominal window size � is 

set to 100ms. The ROC curves for 5 different window 

positions: �4(E), J = 0,1,2,3,4 with a time interval ∆T=50ms 

are plotted in Fig. 3.  

 
Fig. 3.  ROC curves for different window positions  

In Fig.3, it is interesting to observe that the performance is 

best when the window is located at the maximum signal 

envelope with its position at �4(:)
. Using the data further away 

from the maximum gives worse and worse performance.  

B. The effect of window size 

Using the window position at �4(:)
, the impact on the fall 

recognition with N = 8 different window sizes �(L) of 2.5ms, 

5ms, 10ms, 25ms, 50ms, 100ms, 200ms, 300ms are 

investigated and the ROC curves are shown in Fig. 4. 

 
Fig.4. ROC curves with different window sizes 

 

Fig.4 suggests that the window size smaller than 25 ms 

does not capture the entire fall signature. Using a window size 

of about 25ms provides best classification results. Further 

increasing the window size does not provide significant 

performance improvement. 

C. Analysis and discussion  

We shall provide some intuitive explanation of why 

positioning the data window at �4(:)
 gives better results. In 

highly reverberating environments, the waveform of a sound 

event such as person falling, door knocking and object 

dropping has a particular pattern in which the very beginning 

part of the signal is ‘cleaner’ or louder than the following 

parts. This is because the energy contained in the very 

beginning portion of the signal is mostly generated by the 

direct propagation of the sound wave, which has the lowest 

attenuation on the amplitudes, compared to other signal 

components caused by the multiple-reflected propagations 

during the decay of the signal. This pattern leads us to believe 

that certain portion of the signal can provide better SSL 

accuracy. Fig. 5 shows the fall signal described in Fig. 2, 

separated into three portions indicated by three zones, Z1, Z2 

and Z3. The zones are delimited by the two vertical dash lines 

at specified time points T1 and T2.  

 
Fig.5. The fall waveform in Fig. 2 separated in 3 zones (Z1: noise-only zone; 
Z2: signal producing zone; Z3: potential reverberated zone)  
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Fig. 5 shows that the signal may encounter some 

reverberation effect since its amplitude remains largely 

different from zero even at 300ms away from T1 (fall time). 

Intuitively, the signal portion in zone 2 has higher amplitude 

and has the potential to achieve a better estimation accuracy 

of the SSL. 

    Fig. 6 shows the corresponding spectrogram of the fall 
waveform presented in Fig. 2, with the particular window we 

found as best ( �4(:) = 200 ms × HI = 4000 , �Z =25ms) 

indicated by the marked region in Fig. 6.  

 
Fig. 6. Spectrogram of the fall waveform in Fig. 2. 

 

It is commonly known that a SSL estimation of a signal 
richer in frequency content is more accurate than that with 
poorer frequency content. As indicated in Fig. 6, the 
frequency band of the signal in the particular window is much 
wider (0 ~ 6 KHz) which results in a higher SSL estimation 
accuracy. The frequency band in the noise-only part is very 
low (0~300 Hz). The frequency band in the reverberated part 
becomes narrow as the signal decays.  

The window position �4(:)
 in this particular signal is found 

using the procedures described in section III.B. This value is 
consistent with the time domain and the frequency domain 
analysis. 

V. CONCLUSION 

This paper presents a study for improving acoustic fall 

detection accuracy by choosing the data window position and 

duration. We find that positioning the window at the 

beginning of the signal where the amplitude is higher gives 

the best SSL results. The estimation accuracy of the SSL 

increases when the window size increases. However, beyond 

25 ms window duration, no significant performance 

improvement is observed. 
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