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Abstract— Due to the rapidly aging population around the
world, senile dementia is growing into a prominent problem in
many societies. To monitor the elderly dementia patients so as to
assist them in carrying out their basic Activities of Daily Living
(ADLs) independently, sensors are deployed in their homes.
The sensors generate a stream of context information, i.e.,
snippets of the patient’s current happenings, and pattern mining
techniques can be applied to recognize the patient’s activities
based on these micro contexts. Most mining techniques aim to
discover frequent patterns that correspond to certain activities.
However, frequent patterns can be poor representations of
activities. In this paper, instead of using frequent patterns,
we propose using correlated patterns to represent activities.
Using simulation data collected in a smart home testbed, our
experimental results show that using correlated patterns rather
than frequent ones improves the recognition performance by
35.5% on average.

I. INTRODUCTION

Dementia is a serious cognitive disorder which affects
the sufferer’s memory, attention, language, and problem-
solving abilities. Recently, several activity recognition sys-
tems proposed using ambient intelligence to assist dementia
patients in carrying out ADLs independently in smart home
environments [1], [2], [3], [4], [5], [6]. Ambient intelligence
uses pervasive sensors that are sensitive to people’s activities
to detect the micro contexts or happenings in the homes.
Using such information, the system intelligently detects the
patient’s activities and guides the patient in carrying out
ADLs. The purpose is to assist the subject (i.e., the person
with dementia) to be more independent at home and to
reduce the workload of the caregivers. In such systems,
incorporating multiple sensing modalities is important as this
enables us to obtain a wide spectrum of micro contexts,
which is crucial for capturing a more complete picture of
the subject’s activities.

II. PROBLEM MOTIVATION

Discovering patterns that accurately represent patient ac-
tivities is non-trivial due to the complexity of micro con-
textual data. First, the wide spectrum of micro contexts
obtained from the sensor readings means that the data
can be extremely high-dimensional. Using traditional ma-
chine learning methods (e.g. clustering [7]) to mine high-
dimensional data is infeasible due to the effect known as
curse of dimensionality, i.e., the distinction between data
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TABLE I

AN EXAMPLE OF A TRANSACTIONAL DATASET OF MICRO CONTEXTS

Time Sensor Readings Activity
s1 s2 s3 s4 s5

t1 1 1 4 1 3 (1) Preparing food
t2 1 2 4 3 3 (2) Consuming food
t3 1 2 4 3 3 (2) Consuming food
t4 1 0 1 4 0 (3) Keeping Utensils
t5 1 0 4 5 3 (4) Watching TV

points blurs as more and more micro contexts are considered
by these methods. Second, the fact that the micro contextual
data streams in every second or millisecond means that the
data size can grow extremely large – efficient algorithms are
necessary to mine the patterns. Due to the above character-
istics of the data, many existing activity recognition systems
[3], [4], [5], [6] use frequent pattern mining algorithms
because such methods works reasonably well for large data
with high-dimensionality.

In frequent pattern mining, patterns with higher occur-
rences are considered to be more significant [8] and usually
pattern-based activity recognition systems use patterns with
high occurrences to detect the activities. However, patterns
with high occurrences may not be accurate representations
of activities. Table I shows an example of a transactional
dataset of micro contexts, where si[j] represents sensor
si with reading value j. s1[1]s3[4]s5[3] (shaded in light
grey) is a frequent pattern since it occurs four out of five
times in this transactional dataset. Although this pattern has
high occurrences, its occurrences are across three activities,
namely preparing food, consuming food, and watching TV.
Hence, this pattern is not an accurate representation for any
particular activity. Instead of using such patterns with high
occurrences, using patterns which uniquely represent each
activity would be more accurate.

In the case of frequent pattern mining algorithms, the
user has to set a minimum support threshold, such that
only those patterns that occur above this threshold are
considered ‘frequent’ [8]. However, it is difficult to set the
correct minimum support for useful patterns. Using the same
transactional dataset shown in Table I and at a minimum
support of four, s1[1]s3[4]s5[3] (shaded in light grey) is a
frequent pattern as it occurs four times in the transactional
dataset. As its occurrences is across three activities, it is not a
useful representation of activities. On the other hand, pattern
s2[2]s4[3] (shaded in dark grey) only occurs twice and would
not be considered frequent despite the fact that it is a perfect
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representation for the consuming food activity.

III. PROPOSED METHOD

To overcome the weakness of frequent patterns, we pro-
pose using correlated patterns [9], [10] as representation
of activities. We define correlated patterns as patterns that
have higher occurrences only in activities which they are
correlated with. Thus, correlated patterns are more accurate
representation of activities than patterns which might be
frequent across different activities. For example, pattern
s2[2], s4[3] (shaded in dark grey) is a closed correlated
pattern in Table I. Firstly, the occurrences of this pattern
is relatively high, as it occurs 2 out of 5 times in the
table. Secondly, s2[2], s4[3] only occurs in consuming food
activity, and neither s2[2] nor s4[3] occur in other activities.
Hence, the pattern s2[2], s4[3] is a meaningful and useful
representation of consuming food.

In the training phase, the activity recognition system mines
correlated patterns from the training data consisting of micro
contexts. Figure 1 shows the overview of the training phase
with the correlated pattern mining algorithm MIP. The top
table represents the training data (i.e., the micro contexts),
the middle box is the correlated pattern mining algorithm,
and the bottom table shows examples of correlated patterns
and their corresponding activities.

A. Definition of Correlated Patterns

We give some preliminaries before giving the formal
definition of correlated patterns. Let the transactional dataset
be rows of sensor readings taken at different timestamps,
and each row has a label indicating the activity taking
place at the particular timestamp. We can represent such a
transactional dataset as a matrix D = T ×A with timestamps
T and attributes A as its dimensions. We denote attributes
a1, . . . , a|A|−1 as the sensor readings and attribute a|A| as
activity label alabel. Note that we use integers to represent
the activities in activity label alabel, e.g., preparing food,
consuming food, keeping utensils and watching TV activities
in Table I are represented as 1,2,3 and 4, respectively. We
denote the value of attribute a as va ∈ Z, and we also denote
a value of attribute a, at time t, as vat.

An attribute ai can be considered as a random variable
with probability mass function p(vai

) = Pr{ai = vai
} =

occ(vai
)

|T | , where occ(vai
) is the number of times value vai

occurs in matrix D. The conditional probability of value vai

occurring in D, given the occurrence of value vaj
in D, is

p(vai
|vaj

) = Pr{ai = vai
|aj = vaj

} =
occ(vai

,vaj
)

occ(vaj
) , where

occ(vai
, vaj

) is the number of times the values vai
, vaj

occur
together in D.

Definition 1 (Pattern P = T ×A): Let P = T × A be a
sub matrix, where T ⊆ T and A ⊆ A. P is a pattern if the
activity label alabel ∈ A and ∀a ∈ A : ∀t ∈ T : va = vat.

Table I shows an example of matrix D, and P = {t2, t3}×
{a2, a4, alabel} is a correlated pattern that is present in D.

Definition 2 (Correlation information of a pattern): The
correlation information of pattern P = T × S is measured
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Fig. 1. An overview of the training phase with the mining correlated
patterns algorithm (MIP)

by

ci(P ) =

|S|∑
i=1

p(va1
, . . . , vlabel) log

p(vai
, vlabel|va1

, . . . , vai−1
)

p(vai
|va1

, . . . , vai−1
)p(vlabel)

The correlation information is based on the concept of
information theory [11]. Details of the derivations of this
measure can be found in [9]. The first part of the equation
measures how frequent the attributes’ values and the activity
label occur together, and the second part of the equation mea-
sures how correlated the attributes’ values and the activity
label are, i.e. if the occurrence of the attributes’ values and
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the activity label together are by chance. The second part
of this equation is the main component that differentiates
correlated patterns from frequent patterns; the gist of frequent
patterns is in finding attributes’ values and the activity label
that occurs frequently together, but they do not consider if
their occurrences are by chance.

Definition 3 (Correlated pattern): A pattern P = T × A
is a correlated pattern if its correlated information ci(P ) is
high.

A pattern P with high ci(P ) means that the attributes’
values and the activity label occur frequently together and
their occurrence are not by chance. We do not explicitly
ask the user to set a threshold to determine how high the
correlation information should be, as the user will not know
what will be the correct threshold to set, which is the same
situation of frequent patterns. Instead, we propose using a
correlated pattern mining algorithm MIP, which is able to
determine how high the correlation information ci(P ) should
be to be considered as significant. Details of this algorithm
is in the next section.

B. Algorithm for Mining Correlated Patterns (MIP)

We present algorithm MIP, which mines correlated pat-
terns with significant correlation information in an efficient
way.

Algorithm MIP consists of two main parts:
1) Generating seeds. From matrix D, we find pairs of val-

ues (va, vlabel) with significant correlation information,
and denote these pairs as seeds (for growing patterns).

2) Mining patterns. The seeds are treated as initial pat-
terns, and these are used to generate the correlated pat-
terns. The correlated patterns are enumerated through
a depth-first search using the set enumeration tree of
the seeds.

Algorithm MPI is a variant of algorithm MIC [10], which
is used to mine correlated clusters. The main difference
between them is in their second part, as MIP mines patterns
while MIC mines clusters.

The rest of this section describes the two main parts of
algorithm MIP in details, with the middle box of Figure 1
as a reference to these details.

1) Generating seeds: Although we could use all pos-
sible pairs of values as seeds, the search space would
be exponentially large and the computation cost would be
overwhelming (the set enumeration tree approach is NP-
hard [12]). Hence, this first part is necessary to reduce the
exponential search space by filtering away all pairs of values
with low correlation information.

For each pair of values (va, vlabel) given a ∈ A, we
calculate its correlation information ci(va, vlabel) (Figure 1
Middle box Step 1). For conciseness, we denote ci(va, vlabel)
as ci. Let the set of positive correlation information of pairs
of values be denoted as CI = {ci|ci > 0}.

The significance of a seed can be determined by calcu-
lating the statistical probability of observing its correlation
information. Setting the null hypothesis H0 as “A sample
ci is equal to the mean of CI”, we let the probability

Algorithm 1 growSeeds(P, seeds)
Description:

1: for all seed in seeds do
2: if vlabel of seed and P are the same and

ci(extend(P, seed)) > ci(P ) then
3: P ← extend(P, seed);
4: growSeeds(P, seeds/seed);
5: end if
6: end for
7: if P is not extended with any seed then
8: output P as a pattern;
9: end if

of observing ci by chance be p-value(ci). A very low p-
value(ci) means that it is very rare to have this pair of values
with such high correlation information, so a pair of values
is a seed if its ci is statistically significant, i.e., p-value(ci)
≤ α, where α is a preset threshold (Figure 1 Middle box
Step 2). In another sense, α determines how many pairs of
values should be pruned using statistical principle, and [10]
recommends a default setting of 1.0E − 4, which is shown
to be insensitive to the results. Formally,

seeds = {seed|seed = (va, vlabel), p-value(ci) ≤ α, a ∈ A}

To derive the probability p-value(ci), we would first need
to model the probability distribution of CI . Given that (1) the
values in CI are continuous, (2) they are positive and (3) the
probability distribution of CI is unknown and dependent on
data D, either the gamma or the Weibull distribution would
be suitable. Both distributions offer the flexibility of model-
ing any continuous and positive probability distribution, as
the scale and shape of the distribution can be adjusted by
their two parameters [13]. We adopt the gamma distribution
for its higher efficiency [14].

Let CI be gamma-distributed with parameters shape k and
scale θ, i.e. CI ∼ Γ(k, θ). The probability density function
of the gamma distribution is f(ci; k, θ) = cik−1

Γ(k)θk exp(−
ci
θ ),

where ci ∈ CI and Γ(k) =
∫∞
0

tk−1e−tdt is the gamma
function.

After obtaining the parameters k̃, θ̃ using maximum like-
lihood estimation [15], we calculate p-value(ci) using the
cumulative distribution function (cdf) of the gamma distri-
bution

p-value(ci) =
1

Γ(k̃)θ̃k̃

∫ ci

0

tk̃−1e−t/θ̃dt

which is efficiently derived by the Newton-Raphson method
[16].

2) Mining Patterns: Algorithm 1 describes our
growSeeds algorithm, which uses the generated seeds
as building blocks for patterns. The general idea is that
each seed is considered as an initial pattern, and we try to
‘grow’ this initial pattern by extending it with other seed in
a depth-first search manner (Figure 1 Middle box Step 3).

The proposed growSeeds algorithm proceeds as follows.
Each seed is first initialized to be a pattern P = T × A.
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A sub-function extend extends a pattern P with seed =
(va, vlabel), such that P becomes T ×{A∪a}, where a /∈ A
and va, vlabel ∈ T×{A∪a}. Pattern P will only be extended
if: (1) the activity label vlabel of P and the seed are the same,
and (2) the correlation information of the extended pattern is
larger than the correlation information of P (Figure 1 Middle
box Step 4). The first condition ensures that we are mining
patterns that can accurately represent activities, while the
second condition ensures that only useful attributes’ values
are being added to the pattern P to increase the correlation
between the new pattern and the activity. If a pattern P
is not extended with any seed, we output it as a pattern.
After all patterns are mined, we remove redundancy by
performing post-processing to retain only closed patterns
(Figure 1 Middle box Step 5). A pattern P = T×A is closed
if and only if there does not exist any pattern P ′ = T ′ ×A′

such that T ⊆ T ′ and A ⊆ A′ .

IV. EXPERIMENT

The pattern-based activity recognition system requires a
training phase where patterns are mined from a training
data of micro contexts. In this experiment, we mined both
frequent patterns and our proposed correlated patterns from
the training data, and evaluated their accuracy in activity
recognition. We first present the experimental setup and then
the experimental results.

A. Experimental Setup

The experiment was conducted in our smart home envi-
ronment [1], [17].We used the Erroneous Plan Recognition
(EPR) system [1], [17] as the pattern-based activity recogni-
tion system of this experiment.

The EPR system is implemented in Java and the datasets
of micro contexts are stored in MySQL databases on a 3GHz
Windows Vista PC with 4GB memory. We used the algorithm
LCM [18] to mine frequent patterns, and for correlated
patterns, we implemented the algorithm MIP in C++.

We used a meal-time scenario as our testbed, where we
employed a human actor to simulate the scenario five times
so as to get five sets of simulation data. Each scenario took
about 6 to 10 minutes, and the sensor readings were sampled
every second. Thus, each data contains 360 to 600 rows
(representing a second) and 19 columns (representing the
micro contexts). Due to space constraints, the full description
of our meal-time scenario is available in [1]. Although our
given sensors read raw continuous values, in our context,
the data we use have been discretized in a separate and prior
process. This means that most of our final attributes have
binary values.

We performed five-fold cross validation on the dataset. In
the training phase, we mined patterns from the training data
and in the testing phase, we used the patterns to detect the
activities in the testing data.

For frequent patterns, different numbers of patterns were
mined at different minimum support thresholds. As it is im-
possible to test all settings, we used the frequent pattern with
the highest support in each activity to represent that activity.

For the correlated patterns, we tried the recommended default
setting of 1.0E − 4 for the parameter α of the algorithm
MIC [10]. However, we could not mine any patterns. Hence,
we set a less stringent setting of α = 0.5, and since the
data is small in size, setting α = 0.5 does not lead to an
explosion of the search space. The main advantage of setting
a less stringent α is the seeds are not aggressively pruned.
To have a fair comparison with frequent patterns, we also
used the pattern with the highest correlation information in
each activity to represent that activity.

We used precision, recall and F-measure to evaluate the
accuracy of the activity recognition by the system using
frequent patterns and by the system using correlated patterns.

B. Experimental Results

Figure 2 presents the results of the five-fold cross val-
idation. For recall, the system using frequent patterns and
the system using correlated patterns achieve an average of
0.8 and 0.84 respectively, which means that both systems
can detect most of the activities. For precision, the system
using frequent patterns achieves an average of 0.39 while the
system using correlated patterns achieves an average of 0.64,
which translates to a 64.1% improvement. This means that
the number of wrongly recognized activities by the system
using frequent patterns is much higher than the system using
correlated patterns. For F-measure, the system using frequent
patterns achieves an average of 0.52 while the system using
correlated patterns achieves an average of 0.71 – representing
a 35.5% improvement.

From these results, we can deduce that the system using
frequent patterns attempts to recognize as many activities
as possible in the testing data, which results in its large
number of correctly and wrongly recognized activities. On
the other hand, the system using correlated patterns is able to
accurately and correctly recognize the activities. It is possible
that the result of the system using frequent patterns can be
improved if other minimum support thresholds are used, but
it is hard to justify why some thresholds perform better than
others. In addition, the heuristical claim of a threshold being
the most accurate may only suggest that this threshold is
‘overfitted’ to the particular dataset.

Therefore, we have shown that a system using correlated
patterns achieves higher accuracy than a system using fre-
quent patterns, and there is no hassle of parameter setting,
which is normally encountered in using frequent patterns.

V. RELATED WORK

The most widely used activity recognition modeling ap-
proach is the Hidden Markov Model (HMM) and its variants,
because it has the ability to capture sequence information. It
can probabilistically model the complexities and dynamics
of the activities of the people in a smart space. With the
assumption that different activities map to distinct probability
distributions, the activities of each person can be represented
as a Markov model. In a dataset of 28 days of annotated
sensor data in a smart home, HMM and conditional random
fields can achieve a time-slice accuracy of 95.6% and a class
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Fig. 2. Activity recognition accuracy using frequent patterns (FP) versus correlated patterns (CI). Exp denotes the experiment label.

accuracy of 79.4% [19]. In a dataset of 200 hours of hospital
worker activities in a smart hospital, the proposed HMM can
achieve about 92% accuracy for physicians’ activities, 94%
accuracy for nurses’ and interns’ activities [20].

However, HMM does not scale well with respect to the
number of activities and micro-contexts, as the increasing
number will lead to an explosion of hidden states, which will
decrease the efficiency of the model. Activity data is often
high-dimensional, and both HMM and frequent/correlated
pattern mining approaches rely on different assumptions to
reduce the complexity of reasoning about high-dimensional
data. Therefore, our future work will provide accuracy and
run-time comparisons with HMM and its variants.

VI. CONCLUSION

Assisting dementia patient in performing Activities of
Daily Living (ADLs) independently is an important task and
several activity recognition systems have been proposed to
perform this task. Due to the high dimensionality and large
data size, many systems use frequent patterns to detect ac-
tivities. However, activity recognition using frequent patterns
may not be accurate. In this paper, we have proposed using
correlated patterns in activity recognition systems, which we
have shown in our experiments that the accuracy of the
new system is on average 35.5% higher than the system
using frequent patterns. A part of our future work will be
conducting experiments on real data and on a wider variety
of activities.
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