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Generation Of Intervention Strategy For A Genetic Regulatory
Network Represented By A Family Of Markov Chains

Noah Berlow and Ranadip Pal

Abstract— Genetic Regulatory Networks (GRNs) are fre-
quently modeled as Markov Chains providing the transition
probabilities of moving from one state of the network to another.
The inverse problem of inference of the Markov Chain from
noisy and limited experimental data is an ill posed problem
and often generates multiple model possibilities instead of a
unique one. In this article, we address the issue of intervention
in a genetic regulatory network represented by a family of
Markov Chains. The purpose of intervention is to alter the
steady state probability distribution of the GRN as the steady
states are considered to be representative of the phenotypes. We
consider robust stationary control policies with best expected
behavior. The extreme computational complexity involved in
search of robust stationary control policies is mitigated by using
a sequential approach to control policy generation and utilizing
computationally efficient techniques for updating the stationary
probability distribution of a Markov chain following a rank one
perturbation.

I. INTRODUCTION

Genetic Regulatory Networks are often represented as
Markov Chains such as Stochastic Master Equation models
that are a form of continuous time Markov Chains [1], [2]
or Probabilistic Boolean Network models which are coarse-
scale Markov Chain models [3]. One of the objectives of
Genetic Regulatory Network (GRN) modeling is to design
and analyze therapeutic intervention strategies aimed at mov-
ing the network out of undesirable states, such as those
associated with disease, and into desirable ones. However,
limited experimental data prevent accurate inference of the
mathematical model of the GRN. For the success of a mathe-
matically designed intervention strategy for genetic diseases,
it is critical that the designed intervention strategy posses
some degree of robustness to the modeling uncertainties.
In this paper, we will consider the case of the GRN being
modeled by a family of Markov Chains and our interest is
in generating a stationary control policy that will provide
the best expected performance over the family of Markov
Chains.

Optimal control of Markov Processes has a long history
starting from the works of Richard Bellman and Lev Pontrya-
gin. However, most of the development in optimal control of
Markov Processes are based on the perfect knowledge of the
underlying Markov process of the system. Optimal control
approaches has been developed for finite and infinite horizon
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control for both perfectly observable and partially observable
states with the assumption of the knowledge of the underly-
ing Markov process [4]. In real life, we are often faced with
the scenario of uncertainty in estimating the parameters of
the underlying Markov process which necessitates develop-
ment of Robust Dynamic Programming approaches. Robust
dynamic programming from the perspective of worst case or
min-max approach has been recently studied [5]. However,
worst case approach is often conservative, giving too much
importance to events that have extremely small chance of
occurrence. Thus, an expected or Bayesian approach to
optimal control design has to be pursued when our objective
is to improve the expected chances of success. In this article,
we will consider the design of computationally in-expensive
sub-optimal solutions of Bayesian robust control for a family
of Markov Chains.

The paper is organized as follows. Section 2 provides the
mathematical description of the control problem; Section 3
presents the algorithm for robust control policy generation;
the complexity analysis of the algorithm is presented in
Section 4; empirical results are presented in Section 5 while
the conclusions are presented in Section 6.

II. PROBLEM DESCRIPTION

To explain infinite-horizon control of Markov Processes,
let us consider a finite state Markov chain described by the
control-dependent one-step transition probability p;;(u) =
P(zi41 = jlzt = i,uy = u) where, for all ¢, the state
z¢ is an element of a space S and the control input u; is
an element of a space C'. When the transition probabilities
are exactly known, the states make transitions according to
w = (P“)yec. Let p = (uy,us,....) represent a generic
control policy and II represent the set of all possible u’s,
i.e., the set of all possible control policies. Let J,, ., denote
the expected total cost for the average cost per stage infinite-
horizon problem [6] under control policy p and transitions
w:

M-1

%E{ tz:; G(2es e (2e), we) b (1)

() = Jim

where §(z¢, ut, z141) represents the cost of going from state
2zt to 241 under the control action u;. g is higher for
undesirable destination states. The control problem here
corresponds to minimizing the cost in Eq. 1. Consequently,
the optimal infinite-horizon discounted cost is given by:

P(IL, w, 2) := min Jy, ,(20)- 2)
pell
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To explain the issue of robustness, let us re-consider the
nominal control problem described by Eq. 2. In case of
uncertainties, we can parameterizing the class of transitions
as Q := (P¥)uec,acF,, Where F, is the noise parameter
distribution.

One of the ways to approach robust intervention in pres-
ence of uncertainties is to consider the worst-case scenario.
A minimax(worst-case) intervention policy is defined as a
policy whose worst performance over the uncertainty class
Q) is best among all admissible policies. The minimax robust
policy, denoted fi,,,,, is the one that satisfies ®(I1,Q, zg) :=
min, e max,eo Juw(20). The worst-case robust policy de-
sign approach is typically conservative because it gives too
much importance to the scenarios which hardly occur in prac-
tice. When our objective is to avoid extremely undesirable
results, a minimax design is suitable but when our objective
is to improve the expected chances of success, a Bayesian
approach will be preferable. Let vq(16) = E.o[Jp; 0. (20)]
denote the expected cost per state at point a of the parame-
ter distribution for the intervention policy up. A Bayesian
robust policy i, is one that minimizes E,[vq ()] =
Eo[E+ [y we (20)]] where E, denotes expectation relative
to the parameter distribution.

We will consider the case that the uncertainty class is
discrete and we have L possible Markov Chains representing
the underlying system. Consider a System A with two
families of N x N matrices, P = {M{,M3,... . M}}
representing the probability transitions under no control,
and P, = {Mlz,MS, .. .,M%}, representing the family of
related matrices under active control. Let p be the stationary
control policy associated with A. A stationary control policy
on a family of Markov Chains P; and P is a control policy
independent of time and dependent on the state of the system
(sporadic control). Thus for Markov Chains P, and P, with
N states, the stationary control policy u is a N length binary
vector denoting for each state whether control should be
applied (The system will then belong to P») or not (System
will then belong to P»). The decimal representation of the
stationary policy p will have a range from 0 to 2V — 1.
Let P, = {M{',M},...,M}'} denotes the controlled set
of Markov Chains for control policy p. For each matrix
Mj” j € [1,---,L], the ith row of Mf, Mj“, is defined
as MJ! = M} if p; = 0 and MF = M2 if p; = 1. If we
revisit Eq. 1 and consider the case where g(z¢, us, 2¢41) is
only dependent on the final state z;,; and the cost of control
is zero, then minimizing E,[v,(us)] will be equivalent to
maximizing the steady state probabilities of desirable states
and minimizing the steady state probabilities of undesirable
states. In fact, if GG is a length N vector representing the
cost of the N states and 7!' represent the steady state
probability distribution for M} for ¢ € [1,2,---, L], then
Eu[va(ps)] = Zle G(m!")T. We will denote Eq[v, ()]
by I'(us) henceforth. For our proposed algorithm, g, will be
denoted by a set S containing the indices ¢ for which the
control is on i.e. pp ; = 1 and set F' will denote application
of control for all states i.e. FF={1,2,--- ,N}.

III. ALGORITHM FOR STATIONARY CONTROL POLICY
GENERATION

Exhaustive search of stationary policies for Bayesian ro-
bustness is almost impossible for large number of states
as the total number of possible policies for N states and
m controls is m! . Robust dynamic programming based
approaches similar to to min-max control will not apply here
as the principle of optimality is not valid for the expected
cost formulation. The approach presented in [7] minimizes
the expected cost from among the optimal policies for each
individual Markov Chains but a policy can exist that is not
among the individual optimal policies and produce a lower
expected cost. Furthermore, that approach also had huge
computational complexity. The purpose of this paper is to
present a new computationally efficient sub-optimal approach
for calculation of robust control policies for a family of
Markov Chains with the objective of altering the expected
steady-state distribution of the family of networks. Our pro-
posed approach for computationally inexpensive sub-optimal
solution is based on exploring the control policies like a
feature selection problem and apply a sequential search such
as sequential floating forward search (SFFS) [8] approach.
Let us consider our case of L possible networks and binary
controls and we want a stationary policy p that will give the
best expected cost over the L networks. Since our objective is
to alter the steady state probabilities of the networks, then we
can consider changing one entry of x4 at a time and observe
the change in the steady-state probability distributions of the
L networks and keep the change that produces the lowest
expected cost. Then we add one more change and so forth
and the option of going back will be embedded similar to
SFFS [8]. The computational complexity in calculation of the
L steady state probability distributions for each change will
be reduced by using techniques for updating the stationary
probability distribution of a Markov chain following a rank
one perturbation [9]. The new approach for generating the
robust stationary policy is presented as Algorithm 1.

Algorithm 1 Algorithm for generating stationary control
policy
Require: G: State Cost Vector
My ={M{,M},...,M}}; My ={ME M3,...,M}}
Ensure: S, the suboptimal robust stationary control policy
S=10
r; = argmax,ep\s {I(SU{z})}
while T'(S U {z1}) > T'(S) and |S| < N do
S == S U {Il}
o = argmaxzes {I'(S\ {x})}
while I'(S'\ {z2}) > I'(S) do
S =5\ {xz}
z2 = argmaxges {I'(S\ {x})}
end while
z1 = argmaxep\s {I(SU{z})}
end while
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A. Applying Perturbation Theory of Markov Chains to cal-
culate T’

We will consider the approach provided in [9] to effi-
ciently calculate I' at each stage of the addition or deletion
process. Note that the addition or deletion of a control for
a single state is equivalent to perturbing one row of the
controlled matrix. Consider the rank one perturbation on
a Markov Chain M; with steady-state distribution D =
(w%l), Wél), e 771(\})) resulting in a new Markov Chain Ms
represented by My = M; + el.b where e, is the N x 1
column vector which is 1 at position  and 0 elsewhere and
b= M?— M!is 1 x N row vector with b1 # 0. The
fundamental matrix Z for an irreducible Markov Chain M
with steady state distribution 7(!) is given by the equation
Z =[I — M + 17()]~1, For Markov Chain M; with row r
being perturbed, let

B=(Bi,--,Bn) = (P2—PHI-P+17M)7t = b7 (3)
Using [, the steady-state distribution of M> denoted by
72 = (7752), 7r§2)7 ... ,w,(Ll)), can be calculated directly. For

each 7r§2) €, 7r§2) = 7T§1) +lh [8:/(1 = B;)]- In matrix
form, this can be quickly calculated with the equation

7 = 2 4 2 0[3/(1 = B,)] @

This method provides a direct equation for calculating the
new steady-state distribution of a perturbed Markov Chain.
However, using the definition of the Z matrix on M,
this recalculation of steady-state distribution can only be
performed for single perturbations on M;. Hence, a new
Z matrix needs to be constructed for the matrix resulting
from the perturbation, M5, to allow for calculation of further
perturbations. Conveniently, the new Z matrix, Z», can be
calculated directly from Z without the need for a matrix
inversion operation. Again, suppose M; has undergone a
perturbation in row r. Z5 can then be calculated as

(7N Te..1-b-Z Z-e.-b-Z

L= \I= g H2+1—b.z-er ®)

This Zs value, which takes the place of the previous Z
value, corresponds to the fundamental matrix for the newly
perturbed Markov Chain M,. The systematic approach for
generating I'(u) for a change in the rth row is illustrated as
Algorithm 2.

IV. COMPLEXITY ANALYSIS

Let S = () be the initial stationary control policy. The
first step necessary is calculating the steady-state distribution
of the matrices in M. The steady-state probabilities of a
N x N matrix can be computed by a matrix inversion
with a complexity of O(N?) using Gaussian Elimination .
Thus, this initial step will have a complexity of O(L - N3)
computation. The next step computation of the L. Z matrices
has a computational complexity of O(L - N3).

! An improved complexity of O(N2:376) can be achieved by Coppersmith
and Winograd method [10]

Algorithm 2 Algorithm for generating I'(11) for change in
the rth row
Require: G: State Cost Vector
rth row perturbations: by,bs,--- by
Fundamental Matrices: Z1, Zo, -+ , ZN
D )
1 5T s y TN
Ensure: I'(u), the expected cost of the stationary policy

Z1,25, - , ZN, the new fundamental matrices values
7752), 7r§2)7 e ,771(3), the new steady state probability vec-
tors
for i =1to L do

89 =07,

n® = a4 70 () [80)/(1 - 8O ()

_ (r{) T e 1:bsZs Zi-ep-bi-Z;
Zy = |1 - 1—b; Zi-er Z+ 1—b; Z;-er

end for
I'(p) =0
for i =1to L do
D(p) = T(u) + 7> x GT
end for

The next step is the calculation of the single row per-
turbed steady state distributions. This calculation requires
N? + 2. N + 1 operations for a single steady-state re-
calculation. This calculation must be performed on every
matrix in M; and for each row in each M € M, resulting
in N -L (N2 +2-N+ 1) operations to compute all the
possible perturbed steady-state distributions. For subsequent
additions to the static control policy, the number of rows
requiring perturbation calculations decreases directly with
the size of the static control policy: if |S| = m, the cost of
calculating the m+ 1th element of S is reduced to (N — m)-
L (N 242N+ 1). The other steps of calculating the cost
of the control policy based on the steady state distributions
requires additions and comparisons with complexity much
lower than calculating the steady state distributions. After
two iterations, the last step of the algorithm comes into play;
the "floating”, or backtracking, portion of the search. The be-
havior of the backwards search mimics that of the forward in
all respects except the backwards only calculates new steady-
state distributions for states already in S. Thus, if |S| = m,
the reverse step requires m- L (N 242.-N+ 1) calculations
and m comparisons to determine which control, if any, would
be the most advantageous to remove from S. Suppose the
algorithm, in the process of finding the suboptimal control
policy, makes f element additions and b element removals.
In practice, b would be usually of the same order as N.
The algorithm then requires approximately L - N3 + f - N -
L(N*+2-N+1) +b-|S|-L(N*+2-N+1)+2-N
calculations to conclude its search. Without the floating
part, the presented algorithm has a worst case computational
complexity of O(L - N*). For the floating part, when the
number of backwards steps at each step are low (around
2 or 3), the complexity of the presented approach is still
O(L - N*). In comparison, the brute force algorithm has a
much larger computational complexity of O(L - N3 - 2IV).
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V. RESULTS

To analyze the empirical performance of our algorithms,
we considered various sets of coarse-scale Markov Chains
representing GRNs. We considered n genes with binary
states (thus N = 2™); L = 1,---,5 and the family of
Markov Chains are generated from a initial random Markov
Chain using the relationship described in [7]. The control
problem formulation is as described in the previous sections
and the desirable states are considered to be the states with
first gene expression being low (binary zero). We present
the results for the case of N = 2* = 16 (any higher n such
as n = 5 ie. N = 32, makes the brute force calculations
enormous with a complexity of magnitude (L -323 - 232)) in
Table 1. We notice that the stationary control policy gener-
ated by our sub-optimal algorithm has same performance as
the brute force algorithm but requiring much less time.

L | OCost | SCost | TimeO | TimeS

5 .08 .08 93.3 76

10 23 23 147.8 2.3

35 .59 .59 178.61 2.26

50 .52 .52 309.28 2.86
TABLE 1

RESULTS FOR BRUTE-FORCE AND SUB-OPTIMAL APPROACHES. OCOST
= COST REDUCTION BY BRUTE-FORCE OPTIMAL POLICY, SCOST = COST
REDUCTION BY THE PROPOSED SUB-OPTIMAL ALGORITHM, TIMEO AND

TIMES REPRESENTS TIME TAKEN IN SECONDS FOR 10 RUNS BY THE
BRUTE FORCE AND SUB-OPTIMAL ALGORITHMS RESPECTIVELY.

We also empirically compared our algorithm performance
with the approach presented in [7]. We selected the same
40 Markov Chains generated from melanoma data based on
different noise standard deviations. The expected cost of the
min-max approach is 22.02 whereas the expected cost of the
Bayesian Approach presented in [7] is 15.19. The expected
cost with the control generated by the approach presented
in this paper is also 15.19 but time taken to compute the
stationary policy by the new approach is 5 times less than
the previous approach. This shows the advantage of this new
algorithm as compared to brute force and other sub-optimal
algorithms.

VI. CONCLUSIONS

In this article, we presented a novel way of generating
a stationary sub-optimal control policy with best expected
performance for a family of Markov Chains. The complexity
of the approach is much lower than brute force approach
while producing comparable results. This algorithm can have
applications in systems medicine when a genetic regulatory
network is represented by a family of Markov Chains and
our objective is to arrive at a sporadic control policy with
best expected performance.
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