
A dual Kalman filter for parameter-state estimation

in real-time DNA microarrays
Manohar Shamaiah, Student Member, IEEE, and Haris Vikalo Member, IEEE

Abstract—Affinity-based biosensors rely on chemical attraction
between analytes (targets) and their molecular complements
(probes) to detect presence and quantify amounts of the analytes
of interest. Real-time DNA microarrays acquire multiple tempo-
ral samples of the target-probe binding process. In this paper,
estimation of the amount of targets based on early kinetics of
the binding reaction is studied. A dual Kalman filter for the
parameter-state estimation is proposed. Computational studies
demonstrate efficacy of the proposed method.

Index Terms: DNA microarrays, real-time, dual Kalman filter

I. INTRODUCTION

Detecting and quantifying the presence amounts of various

nucleic acid sequences (DNA,mRNA, microRNA) is an im-

portant problem in genomics [1]-[2]. DNA microarrays sense

interaction between target nucleic acid sequences and biolog-

ical sensing elements, and generate signal proportional to the

amount of target molecule. The chemical attraction between

the two leads to binding process in which probes capture

target analytes. There are different transduction methods for

counting the binding events, e.g., fluorescence, electrochemi-

cal, etc. Several thousands of different analytes can be detected

simultaneously due to parallelization of the process. Thus

these systems are both time and cost efficient and may enable

exciting new applications in drug discovery, medicine, defense

systems, and environmental monitoring. But some of the

shortcomings of this technology are that detection is subject

to interference, noise, probe saturation, and other sources

of errors in the analyte detection procedure [3]-[4]. This

adversely affects the sensitivity, dynamic range and resolution

of the DNA microarrays. An important impediment is that the

binding process is a stochastic process which the conventional

microarrays attempt to characterize based on a single sample

from the steady state distribution. As an alternative one could

estimate the amount of target analytes by obtaining temporal

sampled kinetics of the binding process. This is expected to

improve both accuracy and response time [5].

II. MATHEMATICAL MODEL

Consider a DNA microarray with N different types of

probes on its surface. Each probe is designed to capture one

of the targets possibly present in a biological sample that is

to be tested. Let M denote the actual number of different

target types that are present in the sample, M ≤ N . The

real-time DNA microarrays acquire temporal samples of the

binding process, i.e., they provide a time-series of the number

of captured target molecules collected at discrete points in
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time. Note that in addition to hybridization to its matching

probe, a target molecule may also engage in non-specific

cross-hybridization with probes whose nucleotide sequences

are only partial matches with the target. We assume that,

in general, the ith target may hybridize to its corresponding

specific probe as well as cross-hybridize to Ci ≤ N − 1 non-

specific ones. Both hybridization and cross-hybridization are

treated as random events. The probabilities of specific and non-

specific binding of the ith target to the ith and jth probe are

denoted by pii and pij , respectively. On the other hand, if all

we have in the system is binding (i.e., hybridization and cross-

hybridization) then, if enough probes are present, eventually

all target molecules would bind to the probes. However, this is

not the case since both hybridization and cross-hybridization

are reversible processes: once a target molecule is bound to a

probe there is a nonzero probability that it will be released.

We denote the release probability from the hybridized and

cross-hybridized state by prii and prij , respectively.

We use the following notation

• ni(t): the number of free targets of type i at time t

• nb,ij(t): the number of targets of type i bound to the

probe j at time t

• nb,j(t): the total number of targets of all types captured

by the probe j.

The desired parameter is ni(0), the total number of target

molecules of type i in the biological sample being tested.

Moreover it holds that ni(t) = ni(0)−
∑

j nb,ij(t).

Assume the realistic scenario where the number of tar-

get molecules is much smaller than the number of probe

molecules. In other words that there is no saturation of the

probes. Then the change in the number of target molecules

of type i bound to the probe molecules of type j in the time

interval (t, t+∆) is given by nb,ij(t+∆)−nb,ij(t) = (ni(0)−∑

j′ nb,ij′(t))pij − nb,ijp
r
ij . Now, the binding probability pij

is affected by the capturing process- the fewer available (i.e.,

unbound) probes, the less likely that a free target will be

captured. Let πij denote the probability of a target molecule

of type i being captured by the probe j when the number

of probe molecules is unlimited. Then the probability πij in

(t, t + ∆) can be found as pij = πij(np −
∑

i′

nb,i′j(t))/np,

where np denotes the number of probe molecules. Therefore

we can write

nb,ij(t+∆)− nb,ij(t)

=
(

ni(0)−
∑

j
′

nb,ij
′ (t)
)
(

1−

∑

i′

nb,i′j(t)

np

)

πij − nb,ijp
r
ij
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By dividing both sides with ∆ and letting ∆ → 0, we obtain

dnb,ij

dt
=
(

ni(0)−
∑

j
′

nb,ij
′ (t)
)
(

1−

∑

i′

nb,i′j(t)

np

)

kij

−nb,ijk
r
ij + wij(t) (1)

where kij and krij denote the forward and backward reaction

rate of the binding and disassociation process, respectively,

and where we introduce wij to model the uncertainty of the

sensing process. The random variables wij are assumed to be

zero-mean Gaussian with variance proportional to nb,ij , i.e.,

the uncertainty has shot-noise characteristics. We focus on the

early part of the reaction where
∑

j′

nb,ij′(t) << ni(0) <<

np. Here we ignore the quadratic terms in (1), and after

rearranging obtain

dnb,ij

dt
= −

(
∑

j
′

nb,ij
′ (t) +

ni(0)

np

∑

i′

nb,i′j(t)

)

kij

− nb,ij(t)k
r
ij + ni(0)kij + wij(t) (2)

For convenience, denote xi = [nb,i1 nb,i2 . . . nb,iN ]T , 1 ≤
i ≤ M and x = [x1 x2 . . .xM ]t. So x is an MN−
dimensional vector comprising of M target types bound

to each of the N probes. Let ki = [ki1 ki2 . . . kiN ]T ,
and kr

i = [kri1 kri2 . . . k
r
iN ]T . Moreover, let Dk =

diag
(
k1, k2, . . . ,kM

)
, and Dkr = diag

(
kr
1, k

r
2, . . . ,k

r
M

)
,

i.e., Dk and Dkr are diagonal matrices are diagonal matrices

having kij and krij as the diagonal entries, respectively. Then

we can write (2) as the following SDE

dx

dt
= b−Ax+w (3)

where the MN− dimensional vectors b and w are defined as

b =







n1(0)k1

.

.
nM (0)kM






, w =







w11

.

.
wMN







and where A = Dkr +Dk[(11
′

)⊗I]+ 1
np

Db[I⊗(11′)]. Note

that the number of target molecules captured by each of the

probes can be expressed as







nb,1(t)
.
.

nb,N (t)






=










∑

i

nb,i1(t)

.

.
∑

i

nb,iN (t)










= Hx(t)

where the dimension of H = [IN IN . . . IN ] is N ×MN .

The noisy measured process is thus given by yt = ρHx(t) +
v(t) where ρ denotes the transduction coefficient mapping

the number of molecules to light intensities and v(t) is the

Gaussian measurement noise of variance σ2
v . The continuous

time measurement model and the SDE model is thus given

dx

dt
= b−Ax+w, yt = ρHx(t) + v(t) (4)

III. DISCRETIZED MODEL

The solution to the SDE model (3) is given by

x(t) =
(

I − e−At
)

A−1b+

∫ t

0

e−A(t−τ)w(τ)dτ (5)

The continuous time state space model for the process is given

by

x(t + τ) =
(

I − e−Aτ
)

A−1b+ e−Aτx(t) + ǫ(t, τ) (6)

where ǫ(t, τ) =

∫ t+τ

t

eA(u−τ)dw(u). The discretized SDE

model (4) is thus given by (under the assumption of sufficiently

fast sampling) is given by

x(t+τ)=τb+(I−Aτ)x(t)+

∫ t+τ

t

(

I +A(u− τ)
)

dw(u)

︸ ︷︷ ︸

I(t,τ)

(7)

The integral in (7) can be simplified as

I(t, τ)=
(

I −Aτ
)

N
(

0, τDbτ

)

+AN
(

0,
(t+ τ)3 − t3

3
Dbτ

)

where the covariance matrix of w, Rw

(
τ
)
= D(

I−e−Aτ

)
A−1b

If the discrete samples of the observations are obtained at

k∆, k = 1, 2, . . . , L, the discrete equivalent model to (4) is

given by

xk+1 = b∆+ (I −A∆)xk + zk

yk = ρHxk + vk (8)

where xk = x(k∆), yk = y(k∆), vk =

v(k∆), E
[

vkv
′

l

]

= σ2
vINδkl.

zk ∼
(

I−A∆
)

N
(

0,∆Db∆

)

+AN
(

0, Db∆∆3 3k
2 + 3k + 1

3

)

E
[

zkz
′

l

]

= Rz(k, l) =

(

∆
(

I −A∆
)

Db∆

(

I −A∆
)T

+

ADb∆AT∆3 3k
2+3k+1

3

)

δkl (9)

The SDE model (4) is the so-called multivariate Ornstein-

Uhlenbeck (O-U) process which is popular approach to

model interest rates, currency exchange rates, and commodity

prices stochastically. The Ornstein-Uhlenbeck process, also

known as the Vasicek model, is the continuous-time ana-

logue of the discrete-time AR(1) process [6]. The measured

process in (8) is thus a partially observed discrete sam-

ples of a multivariate Ornstein-Uhlenbeck (O-U) process. We

are interested in estimating the amounts of targets θ =
[n1(0), n2(0) . . . , nM (0)]T from the observations {yk}.

Note that the vector b and matrix A are parameter dependent.

The discrete state space model (8) is a linear model, with the

transfer matrix (I−A∆) depending on the desired parameters

{ni(0)}. Further the state dynamic noise zk is also parameter

dependent. The problem of estimating the amount of analytes

of different types given the discrete observations yk, 1 ≤ k ≤
L can thus be formulated as joint state-parameter estimation of
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the state space model (8). Some popularly employed non-linear

estimation techniques [7] include sigma-point particle filter,

UKF, EKF etc. The efficiency of these techniques are many

a times are application dependent. In the present application,

the state-space model is bilinear and this can be exploited

to implement simple estimation technique. In this work, we

propose to tackle the joint state parameter estimation problem

using an iterative procedure based on dual Kalman filtering [8].

The proposed approach is motivated as follows. On one hand,

given the true values of the parameters, the state space model

in (8) corresponds to linear model. On the other hand, given

the true values of the states, we can interpret the state space

model as a linear model in the desired parameters. Hence we

can use two Kalman filters in parallel; One Kalman filter is

used to estimate the states given an estimate of the parameters

and another Kalman filter to estimate the parameters given an

estimate of the states. We iterate between these two Kalman

filters until convergence.

IV. THE DUAL KALMAN FILTER

In this section, we provide the dual Kalman filtering ap-

proach for joint state parameter estimation. Let us first rewrite

the state dynamics in (8) in terms of the parameters θ as

follows, xn+1 =

(

∆Gk−
1
np

[Hxn ⊗ I]

)t

θk +
(

I−
(
Dkr

+

Dk[(11
T )⊗ I]

))

xn + zn(θk).

Hence, we can write a (pseudo) linear observation model
for the parameters θ as follows

ỹn =

(

∆Gk−
1

np

[Hxn ⊗ I ]

)t

θ + zn(θk)

where ỹn
def
= xn+1−

(

I−
(
Dkr

+Dk[(11
T )⊗ I]

))

xn

Gk =







k1 0 . . . 0

0 k2 . . . 0

. . . . . . . . . . . .
0 0 . . . kM







A. Kalman filtering for estimating state sequence

For a fixed parameter set θ̂, we use the linear state space

model in (8). Hence the state estimates obtained using a

Kalman filter is optimal in the sense of minimizing the mean

square error. The Kalman filtering as applied to the state space

model for a fixed parameter is summarized in Algorithm 1.

The optimal states estimates x̂n in Algorithm (1) forms

a input to update the estimate of the parameter which is

discussed in the next section.

B. Kalman filtering for estimating parameters

Using the state estimates x̂n, the pseudo observation model

(10) becomes

ŷn = F11(n)θ + F12(θ)N
(

0,∆Db∆

)

+ A(θ)N
(

0,∆3Db∆

3n2 + 3n+ 1

3

)

(10)

Algorithm 1 Kalman filtering: State estimation

1. Initialization: x̂0|0, P0|0.

for n=1 to L do

2a. Prediction:

x̂n|n−1 = b∆+
(
I −A∆

)
x̂n−1|n−1

Pn|n−1 =
(
I −A∆

)
Pn−1|n−1

(
I −A∆

)T
+Rz(n, n)

ên = yn −Hx̂n|n−1

2b. Filtering:

Kn = Pn|n−1H
T
n

(

HPn|n−1H
T + σ2

v
I
)−1

x̂n|n = x̂n|n−1 +Knên, x̂n = x̂n|n

Pn|n = (I −KnH)Pn|n−1

end for

where ŷn
def
= x̂n+1−

(

I−
(
Dkr

+Dk[(11
T )⊗ I]

))

x̂n

F11(n)
def
=
(

∆Gk −
1

np

[Hxn ⊗ I]
)t

, F12(θ)
def
=
(

I −A
(

θ

))

Though the parameters are static, if our initial estimate is

bad the estimator might take a long time before converging.

A commonly used technique to mitigate this is to allow

the filter to explore the solution by adding small dynamic

noise(time varying parameter). The variance of the dynamic

noise is chosen heuristically. A large noise variance results in

oscillations of the the estimate of the parameter while a very

small noise variance would result in a very slow convergence

of the estimator. Together with the time varying nature of the

parameter, we can write a state space model as follows.

ŷn = F11(n)θn + zn(θn−1)

θn = θn−1 + zθn (11)

where E
[

zθn

(

zθn

)′]

= σ2
θ
IN δkl. The state space model in

(11) is a linear model in θ. We employ a Kalman filtering

based parameter estimation as summarized in Algorithm 2.

The updated parameter estimate θ̂ is fed back into Algorithm

(1) and this iterative procedure can be repeated until conver-

gence. The estimates of the states x̂n can be further improved

Algorithm 2 Kalman filtering: Parameter estimation

1. Initialization: θ̂0|0, P θ

0|0
for n=1 to L do

2. Prediction:

θ̂n|n−1 = θ̂n−|n−1, P θ

n|n−1 = P θ

n|n−1 + σ2
θIN

ên = ŷn − F11(n)θ̂n|n−1

2. Filtering:

Kn=P θ

n|n−1F
T
11(n)

(

F11(n)P
θ

n|n−1F
T
11(n) +

Rz(n, n)
(
θ̂n|n−1

))

θ̂n|n = θ̂n|n−1 +Knên, P θ

n|n=(I −KnF11(n))P
θ

n|n−1

end for

θ̂ = θ̂L|L
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using a Kalman smoother. Algorithm (3) presents one of the

most common fixed interval smoother, usually called the RTS

(Rauch, Tung, and Striebel) smoother to obtain the smoothed

estimates x̂n = x̂n|L. These estimates and inturn the parameter

estimates obtained using the smoothed estimates are expected

to be of higher quality compared to the filtered estimates.

Algorithm 3 Kalman smoothing: State estimation

Filtering steps from Algo. 2.

1. RTS smoother initialization: x̃L|L = x̂L|L, P̃L|L = P̂L|L
for n = L− 1 to 1 do

Smoothing:

Ks = Pn|n
(

I −A∆
)T

Pn+1|n

P̃L|L = Pn|n −Ks

(

Pn+1|n − P̃L+1|L+1

)

KT
s

x̃n|L = x̂n|n +Ks

(

x̃n+1|L − xn+1|n
)

, x̂n = x̂n|L
end for

V. RESULTS

In this section, we present the simulation study to

evaluate the performance of the proposed algorithm.

We use normalized RMSE defined by RMSE =

1√
M
E

[
√
√
√
√

N∑

i=1

(

ni(0)− n̂i(0)

ni(0)

)2]

as a metric for compari-

son. This would provide a common platform for comparing

the performance for different realizations of the parameters

and also different number of analytes.

In figure 1, we investigate the performance variation of the

proposed algorithm with the observation noise variance. In the

simulation set up, M = N = 5,∆ = 0.1, np = 107 and the

true parameters are randomly generated from U(0, 105). It can

be seen that the performance degrades as the variance of the

observation noise increases. The performance of the Kalman

smoother based estimator outperforms the filter based scheme

and also has relatively smaller performance degradation. The

performance degradation of the smoother based scheme is

negligible upto noise variance of 15dB.

Figure 2 shows the RMSE performance as a function

of number of analytes. The performance degrades with the

increase in number of analytes. The degradation is a conse-

quence of estimating more number of parameters with the

increase in the number of analytes. The performance of the

smoother degrades less severely compared to the filter.

Figure 3 shows the RMSE performance improvement with

the number of samples taken. Initially the performance im-

proves significantly with the number of samples, but then the

gains diminish with the increase in the number of samples.

Again smoother based scheme outperforms the filter based

scheme for smaller number of samples and for larger number

of samples they behave identically.

VI. CONCLUSION

In this paper, we presented joint parameter-state estimation

technique for inferring amounts of analytes present in a

biological sample. The proposed method is based on a dual

Kalman filter, and enables target quantification in the early
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phase of the binding reaction. Simulation results were provided

to show the efficacy of the proposed algorithm.
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