
  

  

Abstract—Emerging next-generation sequencing (NGS) 
technology potentially resolves many issues that prevent 
widespread clinical use of gene expression microarrays. 
However, the number of publicly available NGS datasets is still 
smaller than that of microarrays. This paper explores the 
possibilities for combining information from both microarray 
and NGS gene expression datasets for the discovery of 
differentially expressed genes (DEGs). We evaluate several 
existing methods in detecting DEGs using individual datasets as 
well as combined NGS and microarray datasets. Results 
indicate that analysis of combined NGS and microarray data is 
feasible, but successful detection of DEGs may depend on 
careful selection of algorithms as well as on data normalization 
and pre-processing. 

I. INTRODUCTION 
ICROARRAY technology has been widely used for gene 
expression profiling. This technology is attractive 

because of its maturity and because of the large number of 
publicly available datasets. However, there are some inherent 
limitations to microarrays [1]. Starting from 2005, after 454 
Life Sciences introduced its large-scale parallel 
pyrosequencing system, next-generation sequencing (NGS) 
technology gradually overtook the sequencing market. NGS 
is fascinating because it can identify and quantify rare 
transcripts without prior knowledge of a particular gene. It 
can also provide information regarding alternative splicing 
and sequence variation in identified genes [2]. Because of the 
distinguishing features of NGS technology such as low cost 
and high sensitivity compared to microarray technology, 
NGS is becoming the preferred method for genomic analysis. 

Gene expression profiling reveals genetic mechanisms 
behind biological observations and facilitates 
biomarker-based disease diagnosis and treatment. For disease 
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diagnosis, it is important to accurately identify DEGs 
between disease states. Many statistical or empirical methods 
have been proposed to model the behavior of the data and to 
identify differential expression. Each method is usually 
designed to work well for a particular platform. For 
microarray data, some common methods for identifying 
DEGs include Significance Analysis of Microarrays (SAM) 
[3], linear models and empirical Bayes [4], and Rank 
Products (RP) [5]. Poisson-based models—e.g., 
Audic-Claverie (AC), Poisson model with likelihood ratio 
test, and negative binomial model with exact test–are 
appropriate for NGS digital expression values [6-9].  

Sample size has always been a problem in gene expression 
data analysis. Thus, meta-analysis methods—i.e., integrative 
methods that synthesize or review results from multiple 
datasets that are independent but related [10]—have been 
developed to alleviate biases caused by a lack of samples. 

 Because of the limitations of microarrays and the potential 
advantages of NGS, it is tempting to discard microarray 
samples in favor of NGS samples. However, available 
microarray experiments still contain valuable information. 
Until NGS technology matures and until samples become 
more widely and publically available, methods that take 
advantage of both the large number of microarray samples 
and the sensitivity of NGS samples may be useful. Existing 
meta-analysis methods for microarray data include Rank 
Products [5], mDEDS [11], GeneMeta [12], etc. In this work, 
we explore existing DEG detection methods, assess their 
performance in terms of false discovery rate, and discuss their 
pitfalls when combining microarray and NGS data. 
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Fig. 1.  Assessment of microarray and NGS meta-analysis methods 
involves (1) pre-processing of raw data to calculate gene expression 
and (2) application of several platform-specific DEG detection 
methods.  
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II. METHODOLOGY 

A. Overview 
We analyzed the data in three steps: (1) data acquisition, (2) 

data pre-processing, and (3) DEG detection (Fig. 1). The raw 
microarray and NGS data is available from public 
repositories.  Both NGS and microarray data required some 
pre-processing to obtain gene expression values. Finally, we 
assessed the performance of three DEG detection methods for 
each platform respectively. Each method was also applied to 
a combined dataset of NGS and microarray samples to assess 
the feasibility of meta-analysis. 

B. Data Acquisition 
We used publicly available microarray and NGS samples 

from the GEO (http://www.ncbi.nlm.nih.gov/geo/) and SRA 
(http://www.ncbi.nlm.nih.gov/sra) databases (accession 
numbers: GEO11045, SRA000299) [13]. The dataset is 
composed of three technical replicates for each organ (kidney 
or liver) and platform combination. Samples were acquired 
using Illumina sequencing and Affymetrix GeneChip 
technology. 

C. Microarray and NGS Data Pre-Processing 
We calculated the Robust Multichip Average (RMA) gene 

expression values for the microarray data using the 
caCORRECT web-based tool [14]. We then mapped each 
Affymetrix probeset to an Ensembl Gene ID and discarded 
probesets that matched multiple Ensembl Gene IDs. This 
filtering is necessary for matching microarray probesets to 
genes in the NGS data.  

We downloaded raw NGS data from the SRA database in 
fasta format and aligned the short sequence reads to the 
human genome (Genome Reference Consortium, GRCh37.61) 
using the bwa aligner [15] with maximum edit distance of 2 
and maximum number of reported repeat alignments of 1000. 
If a sequence read has several possible alignment locations, it 
contributes a fraction to the total expression levels of the 
corresponding genes. For example, the expression 
contribution of such a sequence read is defined as 1/N, where 
N is the total number of alignment locations. We then 
computed a standard normalized expression value: reads per 
kilobase of exon per million mapped reads (RPKM) of each 
gene that maps to an Ensembl Gene ID. Once we computed 
both microarray and NGS expression values, we took the 
intersection of both datasets to form our final datasets, which 
contain 16676 genes.  

D. Detection of Differentially Expressed Genes 
We applied three different DEG detection methods to each 

platform. For NGS technology, we used the (1) 
Audic-Claverie (AC) statistics, (2) a negative binomial model 
with exact test, and (3) a Poisson model with likelihood ratio 
test. The AC method, applicable to digital counts, calculates 
conditional probabilities of differential expression based on 
the modified Poisson distribution. Such probabilities can be 
treated as p-values [16]. To identify DEGs, multiple testing 
corrections (e.g., Benjamini & Hochberg (BH) [17]) should 

be performed to adjust p-values. These adjusted p-values can 
be treated as estimates of false discovery rate (FDR). The 
negative binomial model with exact test, implemented in R 
(package ‘edgeR’ [18]), uses the negative binominal 
distribution to model overdispersion relative to the Poisson 
distribution for digital gene expression data with a small 
number of replicates [7, 8]. It then uses an exact test to 
compute the exact p-values, also interpretable as FDR after 
BH correction. The Poisson model with likelihood ratio test 
has also been implemented in R (package ‘DEGseq’ [19]) and 
models RNA sequencing as a random sampling process. Each 
read is sampled independently and uniformly from every 
possible nucleotide in the sample. Thus, the number of reads 
coming from a gene follows a binomial distribution and can 
be approximated by a Poisson distribution [9]. FDR is 
estimated by adjusting p-values inferred from the likelihood 
ratio test.  

For microarrays, we used (1) significance analysis of 
microarrays (SAM), (2) Rank Products, and (3) linear model 
and empirical Bayes methods. SAM has been implemented in 
R (package ‘SAMR’) and computes experimental ‘relative 
differences’ for each gene. It then uses random permutations 
of the data to estimate ‘expected relative differences’ and 
identifies DEGs by comparing experimental differences with 
expected differences. FDR is also estimated by using random 
permutations. Rank Products, implemented in R (package 
‘RankProd’), assigns a rank to each gene based on 
fold-changes of all inter-class pairs of samples and then 
calculates the rank product associated with each gene. It then 
uses random permutations to estimate FDR. The linear model 
and empirical Bayes method has also been implemented in R 
(package ‘limma’). It fits microarray data to a linear 
regression model and uses an empirical Bayes method to 
estimate moderated t-statistics. P-values can be inferred from 
moderated t-statistics and can be interpreted as estimated 
FDR after BH multiple testing corrections.  

E. Meta-Analysis 
Although most DEG detection methods were designed for 

particular platforms, we assessed the ability of each method 
to handle the combined mixture of both microarray and NGS 
data. We considered three issues before combining datasets 
across platforms. First, since microarray data uses RMA 
normalization, which produces expression values in the log2 
scale, we either transformed the NGS data into the log2 scale 
or transformed microarray data into the linear scale (i.e., 
raising to powers of 2). Second, the dynamic range of gene 
expression from microarray and NGS platforms are different. 
Thus, we used quantile normalization [20] to force data from 
both platforms to have identical distributions. Third, since 
some genes measured with NGS technology have an 
expression value of zero (no sequence aligned to the gene), 
we filtered out these genes or replaced their values (e.g., by 
assigning very small values) to ensure proper computation. 

To test meta-analysis using each method suitable for NGS 
data, we used the following datasets: NGS raw data (or NGS 
RPKM data), microarray data that has been quantile 
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normalized to NGS data, microarray data that has been 
converted to the linear scale (using power of 2 for each data 
point), and two possible combined datasets from previously 
normalized data. The AC method does not perform 
normalization automatically. Thus, we used RPKM 
expression values for the NGS data. For edgeR and DEGseq 
implementations, we used raw expression values of NGS data 
since these methods already included a normalization step.   

Meta-analysis of microarray specific methods is similar. 
For each method, we tested the following datasets: individual 
microarray data, log2 transformation of individual NGS 
RPKM data, NGS data that is quantile normalized to 
microarray data, and two possible combined datasets from 
previously normalized data. 

III. RESULTS AND DISCUSSION 
We used estimated FDR at 10% as the criterion for 

evaluating the performance of DEG detection methods. All 
genes with estimated FDR less than 10% were considered to 
be DEGs. We assume that more DEGs is better, since, for this 
study, we do not know the true set of DEGs. Moreover, we 
can support this assumption with the fact that biological 
differences are large between the two sample groups—kidney 
and liver tissue. If one method generally has a FDR curve 
lower than that of other methods, we define that method to 
have better performance in terms of DEG detection.  

A. Performance of NGS Methods 
Using three NGS-specific methods, at least 11523 DEGs 

were identified out of 16766 genes (Fig. 2). This means that 
no less than 68.7% of genes were called differentially 
expressed. At a FDR of 10%, the DEGseq method based on 
the Poisson model using the likelihood ratio test 

outperformed the other methods. The flat region on the right 
side of the AC curve is the result of low-abundance genes that 
have similar expression levels and thus have similar 
probabilities. 

B. Performance of Microarray Methods 
The number of identified DEGs ranged from 1548 (Rank 

Products) to 11169 (empirical Bayes) out of 16766 genes (Fig. 
3). Empirical Bayes produced the best result with 66.6% of 
genes called differentially expressed. 

The large differences in FDR curves may result from the 
design of FDR estimation algorithms of these methods. SAM 
and Rank Products estimate FDR by random permutation, 
and then set thresholds to count the number of false positives. 
Rank Products permutes values within samples, allowing a 
much larger number of permutations. On the other hand, 
SAM permutes sample tags (class labels) and may not work 
well when sample size is small.  

C. Meta-Analysis of NGS and Microarray Data 
Table I summarizes all of the meta-analysis results. We 

tested the performance of each method on five datasets, 
representing different combinations of normalized 
microarray and NGS data. We observed that AC statistics, 
DEGseq, and Rank Products are able to detect more DEGs 
when microarray and NGS data are combined. This suggests 
that these methods may be more robust to heterogeneous 
combination of microarray and NGS data. The other three 

 
Fig. 2.  False discovery rate versus the number of DEGs identified in 
NGS data using various NGS-specific methods. 
 

 
Fig. 3.  False discovery rate versus the number of DEGs identified in 
microarray data using various microarray-specific methods.  
 

 
Fig. 4.  False discovery rate versus the number of DEGs identified 
using Rank Products applied to individual NGS and microarray data as 
well as to combined data. 

TABLE I 
NUMBER OF DEGS @ FDR = 10% (META-ANALYSIS) 

Dataset Audic- 
Claverie edgeR DEGseq 

(LRT) 
NGS raw (or RPKM) data 11875 11491 13138 
Microarray QN to NGS data 8372 10276 10877 
Microarray power of 2 data N.A. 8018 8276 
NGS + Microarray (QN) 13903 2185 13289 
NGS + Microarray (power) N.A. 1913 12350 

Dataset SAM Rank 
Products 

Empirical 
Bayes 

Microarray data 8559 1552 11169 
NGS QN to microarray data 6222 1456 11556 
log2 NGS RPKM data 9121 2950 11383 
Microarray + NGS (QN) 2410 3290 4809 
Microarray + NGS (log2) 997 3836 80 

∗ QN: quantile normalization; LRT: likelihood ration test; power: transform 
from log to linear scale. 

∗ N.A. in AC statistics means that this value is not trustworthy, reporting an 
unreasonable DEG detection rate of 100%.  
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methods, edgeR, SAM, and Empirical Bayes did not perform 
well when combining datasets compared to individual 
datasets. However, more datasets should be tested before 
drawing conclusions. 

We also evaluated the behavior of FDR versus the number 
of identified DEGs for the Rank Products method (Fig. 4). 
The FDR at multiple thresholds (number of genes selected as 
DEGs) for the Rank Products method decreases when sample 
size increases (by combining NGS and microarray datasets). 
In Fig. 4, the combined dataset curves are represented by the 
blue and magenta lines. But NGS data did not benefit from 
quantile normalization, the FDR increases in this case (Fig .4, 
red line and blue line). 

 Some meta-analysis methods (e.g., SAM) results in an 
increased FDR compared to that of individual data, regardless 
of the normalization method. These methods depend on 
assumptions about expression values (i.e., expression values 
for each sample are assumed to be drawn from particular 
distributions). Statistically, the dynamic range and data 
distributions differ between microarray and NGS platforms. 
The use of normalization methods such as RPKM and 
quantile normalization is sometimes not enough to overcome 
these differences. Methods such as Rank Products are 
designed for meta-analysis and are less stringent in terms of 
distribution similarity between datasets.  

IV. CONCLUSION 
We have assessed six methods for detecting DEGs from 

NGS and microarray data. Results indicate that these methods, 
applied to individual datasets, vary widely in terms of number 
of DEGs detected at fixed FDR. We have also evaluated the 
ability of each method for meta-analysis of NGS and 
microarray data (combined analysis). We determined that 
such analysis is possible, but should be applied cautiously. 
Normalization and data transformation methods can affect the 
performance of these methods. Using the limited datasets in 
this study, some methods appear to benefit from 
normalization and transformation, for example, Rank 
Products, DEGseq, and AC statistics. In contrast, some 
methods do not perform well when data is normalized, for 
example, SAM, edgeR, and empirical Bayes. Thus, results of 
our exploratory analysis indicate that it is feasible to use 
meta-analysis methods for microarray and NGS data. Such 
analysis takes advantage of both the large number of available 
microarray samples and the higher sensitivity of NGS 
samples for detecting DEGs. However, the success of 
meta-analysis may also depend on normalization or other 
pre-processing steps.  

REFERENCES 
[1] B. R. Graveley, "Molecular biology: power sequencing," Nature, vol. 

453, pp. 1197-8, Jun 26 2008. 
[2] M. L. Metzker, "Sequencing technologies - the next generation," Nat 

Rev Genet, vol. 11, pp. 31-46, Jan 2010. 
[3] V. G. Tusher, et al., "Significance analysis of microarrays applied to 

the ionizing radiation response," Proc Natl Acad Sci U S A, vol. 98, pp. 
5116-21, Apr 24 2001. 

[4] G. K. Smyth, "Linear models and empirical bayes methods for 
assessing differential expression in microarray experiments," Stat Appl 
Genet Mol Biol, vol. 3, p. Article3, 2004. 

[5] R. Breitling, et al., "Rank products: a simple, yet powerful, new method 
to detect differentially regulated genes in replicated microarray 
experiments," FEBS Lett, vol. 573, pp. 83-92, Aug 27 2004. 

[6] S. Audic and J. M. Claverie, "The significance of digital gene 
expression profiles," Genome Res, vol. 7, pp. 986-95, Oct 1997. 

[7] M. D. Robinson and G. K. Smyth, "Moderated statistical tests for 
assessing differences in tag abundance," Bioinformatics, vol. 23, pp. 
2881-7, Nov 1 2007. 

[8] M. D. Robinson and G. K. Smyth, "Small-sample estimation of 
negative binomial dispersion, with applications to SAGE data," 
Biostatistics, vol. 9, pp. 321-32, Apr 2008. 

[9] H. Jiang and W. H. Wong, "Statistical inferences for isoform 
expression in RNA-Seq," Bioinformatics, vol. 25, pp. 1026-32, Apr 15 
2009. 

[10] S. L. Normand, "Meta-analysis: formulating, evaluating, combining, 
and reporting," Stat Med, vol. 18, pp. 321-59, Feb 15 1999. 

[11] A. Campain and Y. H. Yang, "Comparison study of microarray 
meta-analysis methods," BMC Bioinformatics, vol. 11, p. 408, 2010. 

[12] J. K. Choi, et al., "Combining multiple microarray studies and 
modeling interstudy variation," Bioinformatics, vol. 19 Suppl 1, pp. 
i84-90, 2003. 

[13] J. C. Marioni, et al., "RNA-seq: an assessment of technical 
reproducibility and comparison with gene expression arrays," Genome 
Res, vol. 18, pp. 1509-17, Sep 2008. 

[14] T. H. Stokes, et al., "chip artifact CORRECTion (caCORRECT): a 
bioinformatics system for quality assurance of genomics and 
proteomics array data," Ann Biomed Eng, vol. 35, pp. 1068-80, Jun 
2007. 

[15] H. Li and R. Durbin, "Fast and accurate short read alignment with 
Burrows-Wheeler transform," Bioinformatics, vol. 25, pp. 1754-60, Jul 
15 2009. 

[16] J. R. Bradford, et al., "A comparison of massively parallel nucleotide 
sequencing with oligonucleotide microarrays for global transcription 
profiling," BMC Genomics, vol. 11, p. 282, 2010. 

[17] Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate 
- a Practical and Powerful Approach to Multiple Testing," Journal of 
the Royal Statistical Society Series B-Methodological, vol. 57, pp. 
289-300, 1995. 

[18] M. D. Robinson, et al., "edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data," Bioinformatics, 
vol. 26, pp. 139-40, Jan 1 2010. 

[19] L. Wang, et al., "DEGseq: an R package for identifying differentially 
expressed genes from RNA-seq data," Bioinformatics, vol. 26, pp. 
136-8, Jan 1 2010. 

[20] B. M. Bolstad, et al., "A comparison of normalization methods for high 
density oligonucleotide array data based on variance and bias," 
Bioinformatics, vol. 19, pp. 185-93, Jan 22 2003. 

 
 

7621


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

