
  

  

Abstract—Fully implantable Cochlear Implants (CIs) would 
represent a tremendous advancement in terms of quality of life, 
comfort and cosmetics, for patients with profound 
sensorineural deafness. One of the main challenges involved in 
the development of such implants consists of finding a power 
supply means which does not require recharging. To this aim 
an inertial Energy Harvester (EH), exploiting the kinetic 
energy produced by vertical movements of the head during 
walking, has been investigated. Compared to existing devices, 
the EH needs to exploit very low frequency vibrations (<2.5 Hz) 
with small amplitude (<9 m/s2). In order to maximize the power 
transduced, an optimization method has been developed, which 
is the objective of this paper. The method consists in calculating 
the dynamical behavior of the EH using discrete transforms of 
experimentally measured acceleration profiles. It is shown that 
the quick integration of the second order dynamical equation 
allows the use of computationally intensive optimization 
techniques, such as Genetic Algorithms (GAs). The robustness 
of the solution is also evaluated. 

I. INTRODUCTION 
OCHLEAR implants (CIs) are widely used to directly 
stimulate auditory nerves to restore compromised 

functionality in profound sensorineural hearing loss [1, 2]. In 
this framework, fully implantable CIs could be a novel 
solution for improving users’ quality of life in terms of 
comfort and cosmetics. Despite of their expected 
advantages, their actual development is hindered. One of the 
major limitations is due to the lack of an implantable stand-
alone power supply system. Indeed, existing devices require 
rechargeable batteries to be mounted on the scalp, connected 
to a system, which is inductively coupled to an implanted 
receiving coil [3]. 

Energy harvesters (EHs), i.e. compact devices (from 10-1 

to 105 mm3) able to convert mechanical energy available in 
the environment surrounding the CI into electrical energy 
[4], seem to be one of the most suitable alternatives to 
existing powering techniques.  

A wide variety of EHs [5] has been developed in recent 
years, transducing into electricity several forms of energy [6] 

 
Manuscript received on April, 15, 2011.  
This work was partially supported by The Rienzi Foundation (Astoria, 

NY, 1105) under the project “Biomedical technologies for advanced 
hearing aids”. 

A. Sudano, D. Accoto, M. T. Francomano, E. Guglielmelli are with the 
Biomedical Robotics and Biomicrosystems Lab, Università Campus Bio-
Medico di Roma, Italy (phone: +3906225419610; e-mail: 
d.accoto@unicampus.it) 

F. Salvinelli is with the Unit of Otolaryngology, Università Campus Bio-
Medico di Roma, Italy (f.salvinelli@unicampus.it). 

(e.g. thermal, mechanical, electromagnetic, metabolic). 
However, no existing EH can be used for powering 
autonomous CIs, because of the low power density, 
excessive size, weight and mechanical noise [7]. 
Considering all these issues, kinetic energy harvesters, 
which transduce kinetic energy into electric energy, look 
quite appealing for the specific application [4] in terms of 
power density [8]. Physical models of kinetic EHs [8] 
(piezoelectric, electrostatic and electromagnetic) have been 
developed to allow the optimization of mechanical, electrical 
and magnetic parameters. Optimization strategies may 
employ analytical [9], lumped parameters [10, 11] or FEM 
[12] models. 

Compared to other works, the main novelty presented in 
this paper consists in performing a search for optimal 
parameters using Genetic Algorithms (GAs) while working 
with real head acceleration measurements. Given the large 
amount of calculations required by genetic algorithms, a 
mathematical method is presented, based on Discrete Fourier 
Transform (DFT), which allows to significantly reduce 
simulation time, if compared to standard numerical 
integration methods (e.g. Runge-Kutta 4-5), with a 
negligible loss of spectral content.  

The second order mechanical system, whose parameters 
have been optimized, is described in Sec. II. Preliminary 
results are shown in Sec. III, while Sec. IV is dedicated to 
conclusions and future work. 

II. METHODS 

A. Mechanical model 
The energy source for the EH is the kinetic energy 

associated with head movements. In this framework, a 
preliminary simplified mechanical model has been 
performed considering only vertical movements of the head 
during walk, which put in motion an oscillating mass (!), 
similarly to what was reported in [4]. Figure 1 depicts the 
schematic of the mechanical subsystem of the EH. The mass 
is coupled to a flywheel (moment of inertia: !), e.g. by 
means of a pinion-rack mechanism or equivalent, so that the 
system has one degree of freedom, e.g. the vertical 
displacement !. A torsion spring (!) and a torsion damper 
(!) are mounted between the flywheel and the frame. If the 
pinion, fixed to the flywheel, has a radius !, then a 
translation !  of the inertial mass (!) with respect to the 
frame causes a rotation !  of the flywheel, according to 
! = !", where! = 1/! is the transmission ratio. The 
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dynamics of the system is described by: 
 
 !!! +! ! + !!!! + !!!! = !!! +! ! ! − !  (1) 

 
where !! is the rest angular position of the torsion spring, 
! !  is the (absolute) head acceleration and ! is the 
gravitational acceleration (! = 9.81  !/!!).  

 

 
 
Fig. 1. Schematic of the EH mechanical subsystem. The oscillating mass 
(m) causes a rotation of the flywheel (! = !") hinged to the frame and 
connected to a torsion spring (k) and a torsion damper (c). 

 
By introducing the following parameters: 

 

 

! = !  !! +!
! = !!!
! = !!!

 

 

(2) 

and setting !! = !" !, so that when ! = 0 the spring is 
balancing the effect of gravity, equation (1) simplifies into: 

 
 !! + !! + !" = !"(!) (3) 
 
The equivalent damping coefficient ! comprises the actual 
mechanical damping, !!, and a factor, !!, which accounts 
for the energy not dissipated but extracted on purpose from 
the mechanical system to be converted into electric energy. 
In short: 

 
 ! = !! + !! (4) 

 
This choice implicitly assumes that the extraction of electric 
energy causes an equivalent braking torque !!!. Such 
assumption correctly applies, for instance, to 
electromagnetic transducers based on Faraday-Lenz law.  
In general, !!depends on the actual transduction technology 
and power electronics (e.g. voltage boosters, converters, 
etc.) [13] and it might introduce mathematical non-
linearities. In what follows, for simplicity sake, !! is 
assumed to be independent from the linear displacement !, 
so that the model retains its linearity. Under these 
hypotheses, the average electrical power !!" is given by:  
 

!!" =
!
!

!!!!
!
! !"        (5) 

where  ! is the integration period. 

B. Model bandlimiting and discretization  
 
The optimization procedure is based on experimental head 
acceleration data collected using a magneto-inertial sensor 
XsensMTx [14] according to the protocol described in [4]. 
Differently from [4], collected data refer to 5 healthy 
subjects (age: 23±1), the sampling frequency has been 
increased to 200Hz, and the recording time has been 
extended to 160s. 

As already discussed in [4], each subject has its own 
walking style, characterized by a specific cadence, stride and 
head acceleration spectrum. Given the objective of this 
paper, i.e. presenting a methodology for optimizing the 
mechanical parameters of an energy harvester, an 
acceleration head profile has been randomly selected among 
the five recorded ones. This causes no generality loss, 
because the same procedure can be applied to any other head 
acceleration profile, e.g. in order to find the optimal 
mechanical parameters customized for a specific patient. 
Nonetheless, in order to verify that the found solution, in 
terms of optimized !,!,!,!, is not too sensitive to the 
specific acceleration profile used as input, simulations have 
been performed with the other four acceleration profiles, 
determining the corresponding average power (Sec. III).  

In order to analyze the linear system (3) in the frequency 
domain, the Discrete Fourier Transform (DFT) is used. 
The transfer function associated to (3) in the frequency 
domain is: 

 
Since the input signal has a limited bandwidth, also (6) can 
be correspondingly bandlimited and consequently time 
sampled:  
 

 ! ! =
1
!!

!!" ! − 2!
!
!!

!!

!!!!

 (7) 

 
where !! is the sampling period and  !!" !  is the 
bandlimited transfer function. Finally the DFT of the 
system, for an odd number of samples !,    is: 
 

 ! ! =
!

2!  !
!!!

! = 0,… ,
! − 1
2

!∗ 2!
! − !
!!!

  ! =
! + 1
2

,… ,! − 1
 (8) 

 
The output of the system in the discrete frequency domain 

is: 

 Δ ! = ! ! ∙!" !                           ! = 0,… ,! − 1 
 (9) 

which, by means of the Inverse Discrete Fourier Transform 

 ! ! =
1

−!!! + !"# + !
 (6) 
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(IDFT), becomes, in the discrete time domain, the output 
! ! .  
 

C. Optimization 
The optimal model parameters (M, C, K, m) have to be 

identified in order to maximize the generated electric power 
(5). To this aim, an optimization methodology, based on a 
Genetic Algorithm [15], has been devised. 

Because of the desired implantability of the EH, the linear 
displacement ! should be as small as possible. In particular, 
d has been constrained not to exceed ±10  !!, according to 
the size of implantable coils of commercial available CIs, 
employed for inductive powering and data transmission. To 
this purpose, the fitness function has been defined as: 

 

 ! !!" , !! =
!!!"                                                              !! ≤ !!  

!!!" − !
(!! − !!)

!!
    !! > !!

 (10) 

 
where !! is the absolute maximum linear displacementof 
the oscillating mass; !! = 10  !! is the desired maximum 
of the absolute value of !; ! and  ! are cost coefficients, 
respectively valued 1 and 100. In this way, solutions with 
!! > !! are penalized.  
The details about the GA are reported in Table 1.  

In particular, the Rank scale and the Stochastic uniform 
function have been selected in order to reduce selection 
pressure [16]. 

 
TABLE I 

GA PARAMETERS 
Parameter type Value/Type 
Subpopulation 3 
Number of individuals per 
subpopulation 75 

Fitness scaling Rank scale 
Selection Function Stochastic Uniform  
Mutation Gaussian 

Cross-over Type Scattered  
Fraction 0.8 

Migration 
Direction Both  
Fraction 0.2 
Interval 20 

 
 

III. RESULTS AND DISCUSSION 
The optimization problem described in this paper aims at 

maximizing dissipated power while penalizing designs with 
mass displacements above the threshold oM. The 
dimensionality of the search space has been reduced from 5 
to 4 by using (2). The simulation time over a time window of 
160s can be significantly reduced by resorting to discretized 
functions in the frequency domain. Specifically, the 
integration method used in this paper is about 120 times 
faster than Runge-Kutta 4-5. As it can be seen from Figure 
2, the two integration methods present no appreciable 
differences. The use of efficient integration means is of 
paramount importance when complex input signals are used, 
such as experimental head acceleration data during human 
walking.  

The most fit individual found by the GA after 1000 
generations corresponds to the dynamical parameters 
reported in Table 2.  

 
Figure 2.Mass displacement evaluated using DFT method (solid line) and 
Runge-Kutta 4-5 (dashed line) during the last five seconds of simulation, 
i.e. from 155 s to 160 s. Even at the end of the simulation period, no 
difference can be seen. 

 
 

The total dissipated power corresponding to this 
individual is 1.343mW. Evidently this value represents the 
upper bound for the generable electric power because 
 

!! = ! − !! < !. 
The exact value of the generated electric power depends on 
the specific electromechanical parameters of the actual 
transducer. 

In order to assess the robustness of the solution found 
with regards to different input acceleration profiles, the 
behavior of the EH described in Table 2 has been simulated 
using additional 4 experimental acceleration profiles. The 
resulting dissipated mechanical power corresponding to each 
acceleration profile is reported in Table 3. It can be seen 
that, compared to the original value, dissipated power 
increases for two out of four new subjects. 

TABLE II 
OPTIMIZED PARAMETERS 

Parameter Value 

m 10-2 kg 
c 9.74·∙10−

7 Ns/rad 
k 1.61·∙10−

7 Nm/rad 
I 6.37·∙10−

8  kg m2 

τ 497 m−
1 

Optimization result corresponding to the 1000th generation. 
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As it concerns the mechanical design, it is worth 
observing that equation (2) allows one parameter to be freely 
chosen. This freedom of choice allows the designer to tune 
the design to meet further constraints that may not be 
considered during the evolutionary optimization phase (e.g. 
flywheel diameter, spring stiffness etc.). 
 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper a simple and robust optimization method for 
kinetic EH has been presented. The EH is modeled as a 
linear second order system excited by head accelerations 
measured on walking subjects. 

The use of discrete transforms allows shrinking down 
simulation time by two orders of magnitudes compared to 
numerical methods in the time domain, while preserving a 
comparable accuracy. Such time reduction allows the use of 
optimization algorithms, which are simple and robust but 
computationally demanding, such as GAs.  

Future work will be focused on the extension of the 
proposed method to complete EH model (including the 
electric subsystem devoted to power management) and 
develop a prototype in order to validate theoretical 
assumptions. 
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TABLE III 
OPTIMIZED PARAMETERS 

Subject Pav 

[mW] 
1 1.343 
2 1.172 
3 1.373 
4 1.382 
5 1.098 

 
Power generated from the DFT based simulation for 5 different 
subjects using the set of parameters optimized for the first subject. 
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