
  

 

Abstract— One of the most important features of separation 

between benign or malignant tissues is their smooth or rough 

shape. This article presents a new method for early diagnosis of 

thyroid cancer by knowing the resonance frequencies of a 

certain tissue. Two types of nodules were investigated: 

spherical and elliptical. Their external surfaces were smooth or 

rough with different values of spicules. Propagation of sound 

through the human body was modeled by a classical partial 

differential equation associated with Neumann or Dirichlet 

boundary conditions. The assessments of about ten acoustic 

eigenfrequencies are enough to decide the type of external 

surfaces: smooth or rough, or whether nodule is benign or 

malignant. Data obtained by this method refers to the result of 

investigating 3D bodies smaller than 5 mm, when other medical 

devices such as ultrasound or CT cannot evaluate their surface 

shape because of their limited spatial resolution. 

I. INTRODUCTION 

HE cancer diseases are characterized by uncontrolled 

growth of abnormal cells and their uncontrolled 

spread could result death. It is the second most 

common cause of death in many countries. Improvement in 

survival rate reflects progress in diagnosing certain cancers 

at an earlier stage. According to WHO projections over the 

next 20 years, the number of deaths from cancer will 

increase by over 45% [1]. Noninvasive medical imaging 

techniques such as magnetic resonance tomography, 

computerized tomography or ultrasound, supervised by 

expert radiologists, contribute to the early detection, 

assessment, and follow up of the nodules [2], [3]. However, 

the subjectivity involved in the interpretation of the medical 

images made by these techniques can be regarded as their 

major drawback. A system that would be able to interpret 

these images based on explicit features could contribute to 

the objectification of medical diagnosis, as it could provide 

the experts with a second opinion, and could lead to a 

consequent reduction in misdiagnosis rates [4]. 

When a nodule volume is too small, one of the most 

important features that allow detection between benign or 

malignant character of the tissue is its outer surface shape. 

As a result of cellular multiplication and apoptosis 

phenomena there are significant differences (p < 0.05) 
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between the benign and malignant soft-tissue tumors in 

terms of parameters including tumor margin, shape and size. 

Benign lesions did not have infiltrated margins or a 

scalloped shape and malignant tumors tended to be large [5].  

This clue can be used but the spatial resolution of the 

modern medical investigation devices such as ultrasound or 

computer tomograph is limited at about 1 mm, so they can 

appreciate the body shape only its diameter is bigger than 

about 5 to 10 mm. It is possible to have an idea about the 

object dimension taking in consideration that at resonance, 

the diameter has to be an integer number of half-wavelength 

of the signal propagating through it. In the case of smooth 

shapes, there is a certain frequency that meets this condition. 

In the case of rough shapes, there will be more frequencies, 

around central frequency, meeting this condition. 

So, our objective was to detect for small 3D body whether 

its surface is smooth or not, and to appreciate how big the 

body is. From mathematical point of view, the minimum 

diameter is not important, but in this study we limited it at 1 

mm, for matching it to practical investigation. 

In this paper, we modeled nodules by homogenous 

elliptical and spherical bodies. The malignant tissue is 

modeled to have many spicules around a base shape and the 

benign tissue to have a smooth shape [6], [7]. By adding 

random values with normal distribution, the rough surfaces 

were obtained. Spiculated masses are highly malignant and 

failing to detect these findings early can prove fatal. 

Unfortunately, detecting these findings is not easy as these 

masses are invariably submerged in the dense tissue 

background. Studies have shown spiculated masses account 

for a fairly large percentage of missed cancers by both 

radiologists and computer-aided detection algorithms. 

This paper develops a method for calculating tumor 

features for nodules located in thyroid gland. The thyroid 

was modeled using a generic pattern presented in [8]. The 

investigated nodule is located in the left lobe of thyroid. 

Most of adults have nodules or cysts inside thyroid, 

generally of benign nature. Some of them may grow and 

become cancerous. A medical endocrinologist is interested 

in distinguishing between a node of a malignant nature and 

one of the benign nature when their volumes are very low. 

Moreover, he is interested in speed of evolution of the 

tumor. The shape and dimensions of tumors are in direct 

relation with its evolution stage. The two scenarios, benign 

and malignant, are tested by evaluating the acoustic pressure 

generated by high frequency sounds, a noninvasive method. 

The absolute values of the first ten eigenfrequencies give 

information on the size of nodules.  

Distribution of these eigenfrequencies offers a reliable 
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indicator of the degree of surface roughness and hence about 

malignancy character of nodules. 

II. MATERIALS AND METHODS 

In this paper the thyroid is investigated from acoustic 

point of view. The internal structure is considered to be 

uniformly filled with blood. As investigating signal, the 

sound was chosen because it propagates though human body 

with a relative small attenuation and it is not dangerously. 

Under normal conditions we may assume that the 

wavelength of the sounds wave is much longer than the 

mean free path of the thyroid molecules. Then, we may treat 

the thyroid as a continuous medium instead of as single 

molecule. With the assumptions of small perturbations, 

undamped system, zero mean flow, and negligible 

temperature gradient, the acoustic pressure equation p is 

essentially the time-domain wave equation. 

Sound waves in a lossless medium are governed by the 

following equation [2] for the acoustic pressure, p (Pa): 
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where K (Pa)=ρ0 cs
2  is called the adiabatic bulk modulus, ρ0 

(kg/m3) is the density, cs (m/s) denotes the speed of sound, q 

(N/m3) is the dipole source, and Q (1/s2) is the monopole 

source. We treated this equation as an eigenvalue of a partial 

differential equation to solve for eigenmodes and 

eigenfrequencies [9]: 
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The eigenvalue λ introduced in this equation is related to 

the eigenfrequency, f, and the angular frequency, ω, through 

λ = i 2π f = i ω. A general boundary condition was 

impedance boundary condition (Z): 
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where Z (Pa·s/m ) is the acoustic input impedance of the 

external domain and n is for the wave-direction vector. From 

a physical point of view, the acoustic input impedance is the 

ratio between the sound pressure and the normal particle 

velocity. The two opposite limits: Z→∞ and Z→0 are for the 

sound-hard and sound-soft boundary conditions (Dirichlet 

and Neumann boundary conditions). 

By using finite difference method, in space and time, (3) 

has the following general form [7]: 

      0det  ID          (4) 

The eigenfrequencies correspond to resonance 

frequencies, and eigenvectors are connected with the 

acoustic pressure of a particular excitation for which the 

answer is proportional to excitation, the proportionality 

factor being the eigenvalue [8], [9]. Computation of 

characteristic equation roots (4), in finite precision, may be 

highly unstable since small perturbations in the coefficients 

may lead to large perturbations of the roots [10]. 

Two kinds of 3D objects were investigated: ellipsoid and 

sphere. The smooth surfaces of these objects are shown in 

fig. 1a. To simulate the size of spicules, the rough surfaces 

were generated by adding random values to smooth object 

radius. These values have normal distribution, with different 

mean and standard deviation values. The rough surfaces for 

the same types objects are shown in fig. 1b. 

 

III. RESULTS  

The left lobe of thyroid was modeled by an ellipsoid with 

axes 6x4x3 mm. It is considered to be homogeneously and 

filled in with blood, sound speed in blood ρ0 = 1540 km/s, 

and blood density cs = 1025 km/m
3
. Material parameters for 

nodules are considered to be 2o% higher [8]. 

Equation (4) was numerically solved by using finite 

element method. The first ten eigenfrequencies values for 

acoustic pressure of the sound, corresponding to the spheres 

with smooth surfaces, were evaluated. Table I shows these 

ten eigenfrequencies for a sphere with 5 mm radius.  

Frequencies ratio between the first and second spatial 

harmonic is greater than 1.5, and the frequency ratio 

between the first and the tenth spatial harmonic is 

approximately 4.5. 

a) 

b) 

 

Fig. 1 The objects with smooth surfaces, a) and rough surfaces, b). 
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To study the possibility of early malignancy, three kinds 

of spicules were modeled by normal distributed variables, 

N1(.1, .1), N2(.2, .2) and N3(.5, .5). In the same Table I, the 

corresponding eigenfrequencies for the other three spheres 

with rough surfaces having a variable radius, 5±Ni mm (i=1, 

2, 3), are shown as well.  

When sphere irregularities are small, about 2%, 

significant differences between sound waves received cannot 

be detected. In analysis of the worst case, when random 

variable N3 acts on sphere, frequencies ratio between the 

first and second spatial harmonic is about 1.05, and the 

frequency ratio between the first and the tenth spatial 

harmonic is approximately 2.7.  

Fig. 2 offers a better view of influence of mean value of 

random variable on the spectral distribution of the 

eigenfrequencies. Higher spatial harmonics decrease their 

values and tend to be grouped around the fundamental 

frequency.  

 
 

Table II shows the first ten eigenfrequencies for an 

ellipsoid with axes: 7x4x3 mm. Spatial harmonic frequency 

of ellipsoid is smaller than the sphere, about 1.32 times 

because the sphere radius is smaller than the ellipsoid axis, 

1.4 times. This error could be done by finite element 

method.  

In this case, the frequencies ratio between the first and 

second spatial harmonic is about 1.7, and the frequency ratio 

between the first and the tenth spatial harmonic is 

approximately 4.45. 

The early detection possibility was simulated in the same 

manner as in sphere case, by using of three normal 

distributed variables. So, in the same Table II, the 

corresponding eigenfrequencies for an ellipsoid with axes: 

(7±.Ni)x(4±. Ni)x(3±. Ni) mm are shown as well.  

The influence of small irregularities of the surface will 

have more effect on the frequencies of spatial harmonics, 

because the small axis of the ellipsoid is smaller than the 

sphere radius previously analyzed. So, ratio between the first 

and second spatial harmonic is about 1.4, and the frequency 

ratio between the first and the tenth spatial harmonic is 

approximately 3.76.  

The frequencies ratio between the first and second spatial 

harmonic is about 1.06, when random variable N3 acts on the 

axes ellipsoid, and the frequency ratio between the first and 

the tenth spatial harmonic is about 2.27.  

 
 

As at the sphere, increasing roughness causes shrinking 

spatial frequencies values that clump together around the 

fundamental frequency. This thing can be seen on Fig. 3, by 

noticing how spatial harmonic frequencies shrink and are 

grouped around the fundamental frequency as a function of 

random variable amplitude.  

 

TABLE II 

Ten eigenfrequencies for smooth and rough ellipsoids 
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F1 74 72 65 59 

F2 125 101 84 63 

F3 162 147 105 71 

F4 181 159 115 78 

F5 201 174 127 82 

F6 232 196 152 113 

F7 256 204 163 119 

F8 283 217 158 125 

F9 302 259 183 129 

F10 329 271 179 134 

 
  

 
Fig. 2 Spectral distribution of  ten eigenfrequencies for smooth and 

rough spheres 

TABLE I 

Ten eigenfrequencies for spheres with 5 mm medium radius 
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F1 102 100 96 93 

F2 163 158 126 97 

F3 220 213 163 121 

F4 273 258 181 140 

F5 291 263 194 161 

F6 324 305 263 211 

F7 351 314 270 216 

F8 382 347 289 225 

F9 419 392 316 241 

F10 447 418 328 249 
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IV. CONCLUSIONS  

The absolute value of the first resonant frequency is very 

strongly connected by the maximum diameter value of the 

nodule, and consequently, by the stage of the tumor 

evolution. The dimensions chosen in these simulations 

correspond to early stages at evolution of nodules. 

The second eigenfrequency of smooth objects such as 

spheres and ellipsoids is far enough from the first one, more 

than 1.5 times. This may be an important clue in the 

identification between malignant and benign tissue. 

 

The bodies with rough surfaces have many resonant 

frequencies around the first resonant frequency, depending 

how big the roughness is. Analysis of scattering 

eigenfrequencies around the fundamental frequency may 

allow physicians to follow up the time evolution of the 

cancer disease.  
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Fig. 3 Spectral distribution of  ten eigenfrequencies for smooth and 

rough ellipsoids 
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