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Abstract—This study performed an analysis of several 
feature extraction methods and a genetic algorithm applied to a 
motor imagery-based Brain Computer Interface (BCI) system. 
Several features can be extracted from EEG signals to be used 
for classification in BCIs. However, it is necessary to select a 
small group of relevant features because the use of irrelevant 
features deteriorates the performance of the classifier. This 
study proposes a genetic algorithm (GA) as feature selection 
method. It was applied to the dataset IIb of the BCI 
Competition IV achieving a kappa coefficient of 0.613. The use 
of a GA improves the classification results using extracted 
features separately (kappa coefficient of 0.336) and the winner 
competition results (kappa coefficient of 0.600). These 
preliminary results demonstrated that the proposed 
methodology could be useful to control motor imagery-based 
BCI applications. 

I. INTRODUCTION 
 Brain-Computer Interface (BCI) is a communication 
system that does not depend on the brain’s normal 

output pathways of peripheral nerves and muscles [1]. Thus, 
a BCI monitors the brain activity and translate specific 
signal features, which reflect the user’s intent, into 
commands that operate a device. Electroencephalography 
(EEG) is the method most commonly used for monitoring 
brain activity in BCI systems. EEG is a non-invasive method 
that requires relatively simple and inexpensive equipment 
and it is easier to use than other methods [2]. 

Motor imagery-based BCIs are endogenous systems since 
they depend on the user’s control of endogenic 
electrophysiological activity: the amplitude in a specific 
frequency band of EEG recorded over a specific cortical 
area [2]. These systems use motor imagery strategies to 
generate event-related desynchronization (ERD) and event-
related synchronization (ERS) in the alpha and beta 
frequency ranges of the EEG [3], [4]. This type of BCI is 
mainly used for cursor control on computer screens, for 
navigation of wheelchairs or in virtual environments [4]. 
Typically, different motor imagery techniques such as 
right/left hand movement, foot movement, tongue movement 

and/or mental counting are used to control these systems [4]. 
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The aim of the present study consists on applying a 
genetic algorithm (GA) as feature selection method. In order 
to assess the performance of this methodology, the dataset 
IIb of the BCI Competition IV was used [5]. 

Firstly, we formed a set of features extracted by different 
methods: spectral features, continuous wavelet transform 
(CWT) using Morlet Wavelets, discrete wavelet transform 
(DWT), autoregressive models (AR) and µ rhythm-matched 
filter (MF). Then, we applied a GA in order to select the 
subset of features that best discriminate two classes of motor 
imagery for the EEG training data. The selected subset of 
features was then used to classify the EEG evaluation data. 
Subsequently, these results were compared with the results 
achieved for each feature separately. Moreover, they were 
also compared with the results that the algorithms proposed 
by the winners of the competition achieved [5]. 

II. MATERIAL AND METHODS 

A. Subjects, Paradigm and EEG Recordings 
The EEG data have been provided by the Graz University 

of Technology: the dataset IIb of the BCI Competition IV 
[5], [6]. 

The dataset comprises EEG recordings from 9 subjects 
[6]. The paradigm consisted of two classes, namely the 
motor imagery (MI) of left hand (class 1) and right hand 
(class 2). For each subject five sessions are provided, 
whereby the first two sessions (120 trials each) were 
recorded without feedback and the last three sessions (160 
trials each) with feedback. Each trial started with a fixation 
cross and an additional short acoustic warning tone. Some 
seconds later, a visual cue was presented. Afterwards, the 
subjects had to imagine the corresponding hand movement 
over a period of 4 s. Then, there was a rest period of variable 
length from 1.5 to 2.5 s. Training data consist of the first 
three sessions (400 trials) and evaluation data consist of the 
two last sessions (320 trials). 

Three EEG bipolar recordings (C3, Cz, and C4) were 
recorded with a sampling frequency of 250 Hz. They were 
bandpass-filtered between 0.5 Hz and 100 Hz, and notch-
filtered at 50 Hz [6]. In addition to the EEG channels, the 
electrooculogram (EOG) was recorded with three monopolar 
electrodes [6]. 

As a preprocessing stage, we used the EOG data in order 
to correct EOG artifacts in the EEG recordings using an 
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automated correction method [7]. 

B. Feature Extraction 
1) Spectral features: The power spectral density (PSD) of 

each EEG recording segment was computed applying the 
nonparametric Welch’s method [8]. Firstly, this method 
divided the time series ( )x n  into M overlapping segments 
of length L , applied a smooth time weighting [ ]w n  to each 
segment and computed the modified periodogram of each 
windowed segment [ ]Lv n by means of the discrete Fourier 
transform (DFT) [ ]V f  [8]: 
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Finally, all DFTs were averaged to obtain the PSD 
estimate. Our analysis was focused around the µ (8-12 Hz) 
and β (16-24 Hz) bands [2]. We computed the areas of the 
PSD enclosed in the bands under study (Sµ and Sβ). 
Moreover, each PSD estimate was parameterized based on 
the first and second statistical moments (freqM1 and 
freqM2). 

2) Continuous Wavelet Transform (CWT): We filtered the 
EEG data with complex Morlet wavelets (MW). Morlet 
wavelets are Gaussian filters in the frequency domain [9]. 
The wavelet transform of a real signal ( )x t  at time τ and 
frequency f is its convolution with the scaled and shifted 
wavelet [9]. The instantaneous amplitude of the CWT of 
each EEG data segment was computed using two Morlet 
wavelets centered at the bands of interest: 10 and 22 Hz [9] 
(MWµ and MWβ). 

3) Discrete Wavelet Transform (DWT): The DWT 
provides a non-redundant representation of the signal [10]. 
Four-level discrete wavelet analysis was performed using 
the seventh order Symlet mother wavelet. According to the 
sampling frequency of 250 Hz, the following frequency 
bands were approximately obtained for each wavelet level: 
62.5–125 Hz; 31.3–62.5 Hz; 15.7–31.3 Hz (it includes the β 
rhythm); 7.9–15.7 Hz (it includes the µ rhythm); and 0.5–7.9 
Hz. We used the detail coefficients of the third and fourth 
level, related with the bands of interest (DW4 and DW3). 

4) Autoregressive (AR) model: An AR model is quite 
simple and useful for describing the stochastic behavior of a 
time series [11]. It describes the actual sample as 
combination of the  (model order) past samples: p
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where  is a zero-mean-Gaussian-noise process with 

variance 

( )e t
2
eσ  [11]. The index  is an integer number and 

describes discrete, equidistant time points. The coefficients 
of an AR model for each EEG data segment were estimated, 
with a model order of 

k

9p =  [12] and using the modified 
covariance estimation method [13] (AR1-9). 

5) µ Rhythm-Matched Filter (MF): This method creates a 
parametric model for the µ rhythm that is evident in the 
scalp recorded EEG of most of healthy adults [14]. Firstly, 
the fundamental frequency fF of the characteristic µ rhythm 
was determined. Then, it was decomposed in terms of a 
discrete number of phased-coupled sinusoidal components 
[14]. The amplitudes and phases of the fundamental peak 
and the two main harmonics (Am, ϕm) were calculated. The 
MF was modeled as the sum of the three first harmonics 
present in the real rhythm [14]: 
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EEG data segments were circularly convolved for one 
period of the template and the square root of the maximum 
was used as feature (MF). The result was a continuous 
amplitude analysis, similar to that produced by a single 
frequency bin of a conventional spectral analysis technique 
[14]. 

C. Feature Selection 
Genetic algorithms (GAs) are computational models 

inspired by evolution [15]. These algorithms encode a 
potential solution to a specific problem on a simple 
chromosome-like data structure, and apply recombination 
operators to these structures in such a way as to preserve 
critical information. GAs are often viewed as function 
optimizers, although the range of problems to which genetic 
algorithms have been applied is quite broad [15]. 

The present study uses a GA for feature selection. Thus, 
each member of the population was encoded with a binary 
string of length equal to the feature set size. Each bit of 
these strings represented one specific feature. If the bit value 
was ‘1’, this feature was used for classification, if the value 
was ‘0’ it was not used for classification. Therefore, each 
member of the population represented a feature subset. 

The fitness value of each member of the population was 
calculated as the kappa coefficient [16] achieved using the 
corresponding feature subset for classifying. This criterion 
of accuracy has also into account the distribution of wrong 
classifications and it was chosen because it was used to 
evaluate the submissions to the dataset IIb of BCI 
Competition IV [5]. 

Population size was equal to the feature set size. The 
elitist selection was set to 2 and the roulette selection 
method was used [17]. Single-point crossover with 
probability of 0.8 and uniform mutation with probability of 
0.1 were applied to every generation in order to create the 
next population [18]. The number of generations was set to 
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50 [17]. The GA searches for all feature subset sizes smaller 
than 15 features. 

D. Classification 
The classification method proposed by the winner of the 

BCI Competition IV for the dataset IIb was a Naïve 
Bayesian classifier [5]. The proposed classifier used Parzen 
Window and employed Gaussian kernel and normal optimal 
smoothing in the estimation of the conditional probability 
density function. Although the computationally simple 
Naïve Bayesian classifier assumed a strong independence of 
all the features, it is one of the most effective classifiers and 
has been shown to have good classification performance on 
many real datasets [19]. 

III. RESULTS 

A. Training Set 
All algorithm parameters were estimated by means of 10-

fold cross-validation optimization in the training set. 
We focused the analysis on the different modulations of 

the µ and β rhythms. We assumed that the channel Cz 
contained little of discriminative information [9]. Thus, we 
restricted the analysis to the channels C3 and C4. 

Fig. 1 shows the results achieved by the implemented GA 
to find the most discriminative subset of features (all 
features are listed in Table I). After 50 generations, the GA 
got a kappa coefficient value of 0.639. The best subset, i.e. 
the selected subset, consisted of the following features: 1, 2, 
4, 7, 10, 16, 28 and 36. They are eight features extracted by 
means of all the feature extraction approaches: four spectral 
features, one feature related to the CWT in the µ frequency 
band, one feature related to the DWT in the β band, one 
feature from the AR model and the last feature extracted by 
means of the µ rhythm matched filter. 

 

B. Evaluation Set 
The kappa coefficient achieved by each single feature 

separately in the evaluation data is shown in Table I. The 
highest kappa coefficient achieved is 0.336. This value is 

lower than the value achieved by the winner of the 
competition: 0.600 [5]. However, using the feature subset 
selected by the GA, it is possible to achieve a kappa 
coefficient of 0.613 for the evaluation data, as it is also 
shown in Table I. 

TABLE I 
K  APPA COEFFICIENT ACHIEVED FOR EACH FEATURE SEPARATELY AND FOR

THE SUBSET OF FEATURES SELECTED BY THE GA 
Feature 
number Feature Kappa Coefficient 

1 Sµ channel C3 0.318 
2 Sµ channel C4 0.325 
3 Sβ channel C3 0.222 
4 Sβ channel C4 0.237 
5 freqM1 channel C3 0.218 
6 freqM1 channel C4 0.271 
7 freqM2 channel C3 0.236 
8 freqM2 channel C4 0.258 
9 MWµ channel C3 0.256 
10 MWµ channel C4 0.313 
11 MWβ channel C3 0.224 
12 MWβ channel C4 0.277 
13 DW4 channel C3 0.232 
14 DW4 channel C4 0.231 
15 DW3 channel C3 0.266 
16 DW3 channel C4 0.286 
17 AR1 channel C3 0.240 
18 AR2 channel C3 0.165 
19 AR3 channel C3 0.215 
20 AR4 channel C3 0.194 
21 AR5 channel C3 0.186 
22 AR6 channel C3 0.181 
23 AR7 channel C3 0.182 
24 AR8 channel C3 0.181 
25 AR9 channel C3 0.188 
26 AR1 channel C4 0.241 
27 AR2 channel C4 0.185 
28 AR3 channel C4 0.216 
29 AR4 channel C4 0.175 
30 AR5 channel C4 0.179 
31 AR6 channel C4 0.193 
32 AR7 channel C4 0.185 
33 AR8 channel C4 0.194 
34 AR9 channel C4 0.199 
35 MF channel C3 0.336 
36 MF channel C4 0.334 

Selected subset of features by the GA: 1, 2, 4, 7, 
10, 16, 28, and 36  0.613 
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IV. DISCUSSION AND CONCLUSION 
The present study analyzed different signal processing 

methods to extract features which allowed to discriminate 
between two classes of motor imagery. From simple features 
as spectral features, to more complex methods as µ rhythm 
matched filter were analyzed. Applying the extracted 
features separately, the best result was achieved by the µ 
rhythm matched filter at channel C3: a kappa coefficient of 
0.336 was obtained. To improve this result, we proposed a 
genetic algorithm as feature selection method. 

The subset of features selected by the GA consisted of the 
following features: 1, 2, 4, 7, 10, 16, 28 and 36. This subset 
contained features extracted by means of all our proposed 
approaches in the feature extraction stage: spectral features, 

 
Fig. 1.  Fitness values achieved by the genetic algorithm used as feature 
selection method. After 50 generations, the algorithm gets a minimum of 
the fitness value that corresponds to a kappa coefficient of 0.639. 
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CWT using Morlet Wavelets, DWT, AR and µ rhythm 
matched filter. Separately, none of these features was able to 
achieve a kappa coefficient higher than 0.34. However, the 
GA explored and exploited the solutions space and selected 
the most discriminative subset. Some of the features of the 
selected subset did not achieve the best results separately, as 
the 28th, 4th or 7th feature, but in combination with the other 
features of the subset it allowed to improve significantly the 
classification result. The selected subset achieved a kappa 
coefficient of 0.613 for the evaluation data. 

Our methodology improved the best results from the 
dataset IIb of the BCI competition IV (0.613 vs. 0.600). It 
also improved the results achieved in later studies [20], [21]. 
The winner method of the BCI Competition IV for dataset 
IIb (FBCSP and Naïve Bayes) was improved by Ang et al. 
[20] adding a robust Minimum Covariance Determinant 
(MCD) estimator to avoid the method sensitivity to outliers. 
The winner result was improved up to a kappa coefficient 
value of 0.606. Shahid et al. [21] proposed a bispectrum 
approach to feature extraction and a Fisher’s linear 
discriminant analysis (LDA) as classifier method. Thus, the 
maximum kappa coefficient achieved was 0.607. The 
methodology proposed in the present study was able to 
improve these results. Therefore, it could be useful to be 
implemented in motor imagery-based BCI systems in order 
to discriminate between two classes of motor imagery. 

Future work will be focused on increasing the number of 
features extracted, applying new methods (wavelet packet 
analysis, multivariate AR modeling, etc.), new frequency 
bands of interest and more EEG channels. In addition, more 
complex classifiers, as support vector machine (SVM), will 
be used. 

In summary, the present study analyzed different feature 
extraction methods. Moreover, the need of applying a 
feature selection method was justified in order to 
significantly improve the classification results. Feature 
selection methods allow to find out specific subsets of 
features that best discriminate between two motor imagery 
mental tasks. Therefore, the use of genetic algorithms as 
feature selection methods could be useful in order to control 
BCI applications. 
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