
  

  

Abstract— The identification of the intentionality of 
movement is a key-aspect for the development of brain-
computer interfaces (BCIs) applicable to daily life in 
neurological patients. We present a novel method of processing 
of electroencephalography (EEG) signals for the extraction of 
movement intention in neurological patients with upper limb 
tremor. This method is based on event-related EEG 
desynchronization, considering α (8-12Hz), β (13-30Hz), and γ 
(30-40Hz) bands. We have analyzed the EEG signals from the 
sensorimotor areas of 4 neurological patients presenting an 
upper limb tremor (grade 1 to 3/4) and executing successive 
finger-to-nose movements. A Quality Parameter (QP) for the 
detection of intentionality of movement has been extracted, by 
considering: (a) the changes in the β²/α and β/α ratio 
(representing bursts of β-γ frequencies) during the pre-
movement period; (b) an appropriate threshold predicting the 
movement; (c) the number of movements executed. This QP 
allows the prediction of the voluntary movement with a 
probability between 70% and 90%. This method could be 
implemented in a wearable BCI to detect the intentionality of 
movement and could be used, for instance, to trigger the 
electrical stimulation in selected muscles of upper limbs with 
the aim of blocking the emergence of tremor.   

I. INTRODUCTION 
ecent studies aim to develop and validate a new 
treatment for upper limb tremor based on the 

combination of Functional Electrical Stimulation (FES) [1]-
[2] with a Brain-computer interface (BCI). It is anticipated 
that a BCI-driven detection of voluntary movement can be 
used to trigger the FES, which is applied using a matrix of 
electrodes embedded in a wearable textile. Tremor would be 
selectively cancelled during a voluntary movement without 
interfering with the movement itself, thus resulting in 
smooth and accurate movements.  

Different neural signals have been proposed for BCIs, 
such as electroencephalographic (EEG) recordings [3]-[4], 
slow negative potential shifts [5], and evoked potentials [6]. 
These last years, the attention has been put on spectral 
features of the EEG during the period preceding movement 
[7]. Indeed, EEG activity before the beginning of a 
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movement is characterized by a decrease in the power of the 
α band (8-12Hz) and an increase in the β (13-30Hz) and γ 
(30-40Hz) bands. This phenomenon is known as event-
related desynchronization/synchronization (ERD/ERS) [8]. 

In order to use the neural signals to control an electronic 
device improving the patient’s motor performances, the 
analysis and the classification of these signals must be 
computed in real time [9]. However, the classification of 
EEG signals is challenging, because it has to be performed 
on a single-trial basis and not on averages of recordings. 

We aim to suggest a Quality Parameter (QP) for the 
detection of the intention of movement in real-time. The QP 
takes into account (a) the changes in the β²/α and β/α ratios, 
representing bursts of β or γ frequencies related to motor 
preparation of voluntary movements, (b) the appropriate 
threshold indicating which peaks of ratio are actually 
followed by a movement (and therefore may be considered 
as a predictor of movement), and (c) the number of 
movements executed. 

II. MATERIALS AND METHODS 

A. Patients description 
Acquisition of data was carried out on 4 neurological 

patients following approval of the local Ethical Committee. 
Patients were affected by: Parkinsonism of vascular origin 
(n=1), Parkinson’s disease (n=1), Essential tremor (n=1) and 
post-traumatic brain injury (n=1). Male/female ratio was 3:1. 
Mean age of the patients was 62±20 years. The patients were 
right-handed and presented with upper limb tremor of grade 
1 to 3/4. The ADL-T24 score range was 4-17/24. Schwab 
and England ADL score ranged from 50 to 100%. 

B. Experimental set-up 
Patients were comfortably seated and equipped with an 

EEG conventional cap with the following location of EEG 
electrodes (10-20 system):  FC3, FCz, FC4, C5, C3, C1, CZ, 
C2, C4, C6, CP3, CPZ, and CP4 (POz: ground; linked ear-
lobes: reference). The patients maintained the eyes open. 
Artifacts were minimized by restraining head movements, 
keeping jaw and face relaxed and by avoiding swallowing or 
blinking during the recordings. Artifact rejection was 
applied by visual inspection of traces. EEG signals were 
sampled at 256 Hz (re-sampling at 1000 Hz for 
synchronization purposes) and band-pass filtered at 0.5-60 
Hz.  IMU sensors (gyroscopes) were used. Two gyroscopes 
were located on the anterior face of the upper limb at about 4 
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cm above and below the elbow, respectively. The patients 
executed sequences of "finger-to-nose" movements cued by 
acoustic orders. The finger-to-nose task consists in touching 
the nose with the index finger, keeping the index on the nose 
for about one second and coming back to the thigh (starting 
position). After (1) hearing an acoustic signal, the patient (2) 
prepared himself mentally for the execution of movement 
and (3) performed the task. The dominant arm was studied. 
During a single run, the task was repeated about 10 times. 
Patients were first trained in order to perform the task 
correctly. Each patient executed a maximum of 6 runs. The 
nomenclature used for the recorded files is “pppFNnn" 
standing for patient’s code, task executed ("Finger-to-nose") 
and run number, respectively.  

C. Signal analysis 
Upsampled EEG data were processed with a Hamming 

window of 256 samples, an overlap of 250 in the time 
domain. Spectrograms were computed at the frequencies 
from 1 Hz to 40 Hz with Goertzel algorithm using a short 
time Fourier Transform. A one-sided power spectral density 
(PSD) matrix was then obtained with (1): 
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P is then containing the PSD of each segment for the 
frequency range 1-40 Hz, w(n) denotes the Hamming 
window function and  Fs is the sampling frequency (1000 
Hz). 

Three time intervals were studied: pre-movement period, 
movement period, post-movement period. The pre-
movement period (lasting 2 seconds) was defined according 
to the acoustic order given to the patients and to the 
detection of the beginning of movement via the gyroscopes.  

The α, β and γ frequency bands were compared by 
calculating β/α and β²/α ratios. PSD in a β-γ frequency band 
was divided by the PSD in the α frequency band, according 
to (2). 
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Where n = {1,2} depending on the ratio considered (squared 
or not).  
f is the interval of β-γ frequencies (e.g.: from 26 to 33 Hz).  
f ’ is the interval of α frequency (e.g.: from 8 to 10 Hz). 
 

  To extract these sub-bands, the following intervals in the 
α, β and γ frequency bands were first studied: 8-12Hz (8Hz, 
9Hz, 10Hz,11Hz,12Hz), 8-10Hz, 10-12Hz, 13-40Hz, 13-
26Hz, 26-40Hz, 13-20Hz, 20-26Hz, 26-33Hz, 33-40Hz, 13-
16Hz, 16-20Hz, 20-23Hz, 23-26Hz, 26-30Hz, 30-33Hz, 33-
40Hz. Therefore, each β-γ interval was compared with the α 
intervals. A total amount of 105 couples of  intervals were 
thus analyzed. By applying (2) to the EEG power spectra 
from all the EEG channels and the successive runs, we 

obtained ratiograms which are spectrogram-like 
representations of EEG activities on the skull. An alternative 
technique using a fitting procedure has also been tested. 
Data were filtered and processed with a level 12 polynomial 
fitting in order to build an artificial EEG signal supposed to 
produce a smoother signal for spectral processing. 

D. Threshold and Quality Parameter 
The peaks (β/α and β²/α ratios) higher than a defined 

threshold were considered as indicators of a potential 
voluntary movement, given that they represent the detection 
of the cortical motor preparation of the movement (Fig. 1). 

 

 
Fig. 1. Schematic representation of the thresholding procedure. Note the 
peaks (for an arbitrary ratio amongst the 105 ratios processed) higher than 
the threshold occurring in the pre-movement period. 
 

Two methods were applied to determine the appropriate 
threshold. These methods were designed to detect peaks in 
ratiograms: 

-a first static method was to define the threshold as a 
percentage of the maximum ratio over time. We tested the 
effectiveness of the threshold fixed at 40%, 50% and 55% of 
the highest ratio. 

ttratioT ∀= ))(max(                  (3) 
 

-a second statistical method was to define the threshold 
considering the mean and the standard deviation of the 
ratios: 

   ( ) ttratiostdKtratiomeanT ∀×+= ))(())((      (4) 
 
where std stands for standard deviation, and K is a constant 
coefficient. Note that the mean and the std are global to the 
whole record. We tested: mean+4std, mean+4.5std, 
mean+5std, mean+5.5std. 

 
All the values of ratios higher than the threshold and 

occurring within a pre-movement time window of 2 seconds 
were counted and divided by all the values superior to the 
threshold occurring outside the pre-movement window. This 
calculation was applied to each EEG channel and the 
maximum value was retrieved. Such parameter was expected 
to represent an index of prediction of a voluntary movement. 
However, this value was found to be unreliable. Indeed, this 
method could result in a high probability of movement also 
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in the case when only one single movement is effectively 
executed along the run, thus providing an erroneous 
prediction (false positive). To solve this issue, the number of 
movements detected was added in order to adjust the 
sensitivity of the index and to obtain a robust value, 
considering that this kind of error would compromise the 
procedure for the definition of the threshold. We thus 
defined a QP as the geometric mean of the probability of 
movement (true positives) and the number of movements 
executed. A good QP has a value equal or higher than 70% 
[10]-[11]. Therefore, a run presenting a probability of 
voluntary movements of 100% (meaning that each peak of 
the ratio is followed by a movement) and of 18% of 
movement detected (meaning that the patient did not 
executed the task after each order) -as logically expected-  is 
associated with a low quality parameter 
( %4218100 =×=QP ). 

III. RESULTS 
Fig. 2 shows the ratiogram from the run 001FN04 (total 

duration of about 2 minutes). In this case, the sub-bands 8-
10Hz and 26-40Hz have been selected to compute the β²/α 
ratio. 

 
Fig. 2. Ratiogram of the β²/α ratios.  Sub-bands selected:  8-10Hz and 

26-40Hz. The figure shows the changes in the values of the ratios (color 
scale) over time (X axis) and along the 13 EEG channels studied (Y axis). 
The magenta dotted lines indicate the acoustic order and the black dotted 
lines the movement performed. Note that the increases of ratios occur 
mainly in the pre-movement period (in yellow-red).  

 
A total of 17 runs were analyzed (see session II.B and Fig. 

3). The values of the best QP obtained were higher than 70% 
in almost all the cases studied (Fig. 3), although an intra-
patient variability was found. These values have been 
selected among the QP obtained with the 2 methods for 
calculating the threshold and the different ratios of sub-
bands (β²/α and β/α). The mean QP was 82±12% (median= 
83.5%) for the β/α ratio and 79.5±10,4% (median= 80%) for 
the β²/α ratio. We found no significant difference between 
the QP calculated from β/α ratio and β²/α ratio (p = 0.502). 

 
Fig. 3. Overview of QP for all the runs. Each patient executed several runs 
of successive finger-to-nose movement. The figure shows the best QP 
obtained.  

 
Regarding the fitting procedure of EEG traces, the error 

was very close to zero. However, the fitting influenced the 
data processing in a variable manner, either improving or 
worsening the results for the QP along the different runs 
performed by the patients.  

The different methods used for computing the threshold 
influenced the values of QP with an inter-patient and intra-
patient variability. The highest QPs were found when the 
selected sub-band of frequency included the 30-35Hz. A 
strong correlation (r=0.97) was identified between the QP 
and the ratios obtained from β-γ sub-bands, progressively 
shifting towards high frequencies divided by α sub-bands 
(i.e. 13-16Hz/α, 16-20Hz/α, 20-23Hz/α, 23-26Hz/α, 26-
30Hz/α, 30-33Hz/α, 33-40Hz/α). A sub-band of interest is 
more difficult to identify for the α band. However, the entire  
α band and its sub-bands never provided low values of QP. 
Figure 4 illustrates a way of localizing (in the frequency 
domain) the preparation of movements, with the highest 
QP’s. 

 
Fig.4. Illustration of the QP probability maps with a color code. The 
frequencies in the beta-gamma band are given on the X axis. The Y axis 
corresponds to the alpha band. Hot spots are clearly identified between 30 
and 40 Hz, whereas a sub-band of interest is more difficult to identify for 
the alpha band. 

 
An illustrative map of the QPs computed from the signals 

at the different EEG channels is shown in Fig. 5. As 
expected, the best values for prediction of movement have 
been found in C1-C3 channels (right-handed patient 
performing a movement with the right upper limb). 
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Fig. 5.  Mapping of the QPs. QP is higher in the EEG signals recorded from 
the C1-C3 channels. This means that signals from this area (red) provide a 
higher probability to efficiently predict the intention of movement.   

IV. DISCUSSION 
We present a novel method to predict the intentionality of 

movement in neurological patients presenting tremor in the 
upper limbs. We have extracted a  "Quality Parameter" (QP), 
defined as the geometric mean of the probability of 
movement prediction (based on the changes in ratios of sub-
bands according to the ERD/ERS phenomenon) and the 
number of movements detected. We propose that values 
equal or higher than 70% correspond to a good QP [10]-[11]. 
QP values even greater than 90% were observed in some 
runs performed by 3 of the patients. However, an inter-
patient and intra-patient variability was found and further 
evaluations with a larger number of patients and runs per 
patient are required. The complexity of EEG recordings in 
patients with tremor performing upper limb movements 
should not be underestimated. The fitting step improved the 
results only in some of the signals analyzed, but had also 
deleterious effects in other cases. This procedure would 
result in an increase of the processing time in a real time 
device without improving the final results. However, a 
fitting module could still be taken into consideration for 
those patients who beneficiate from this method, in a case-
by-case situation.  

During the experiments, patients were asked to focus their 
attention on the execution of the task, and to execute the 
movement after an acoustic signal. Therefore the selected 
time window of 2 seconds was an appropriate interval for 
the laboratory use. In daily life, movements are most often 
performed in a semi-automatic way and their analysis may 
require a shorter time window. These are 2 limitations that 
need to be considered. QP parameter has been defined as a 
geometric mean in order to force both the true positive 
stimulation rate (in case of FES application) and the 
percentage of detected movements to be high enough to 
obtain a good QP value.  The threshold step uses a global 
standard deviation (see II.D.). In practice, the std could be 
segmented with the same time frames described in section 
II.C. Moreover, adaptive algorithms could be implemented 
to take into account variations of the std and, thus, to adapt 

to different kinds of activities that have different ratio 
profiles. We suggest that the choice of the thresholding 
method and the convenient sub-band ratio for the application 
of QP in the framework of a BCI-driven system should be 
made for each patient, depending on the disorder.  

V. CONCLUSION 
The QP is a promising index in the field of the ERD/ERS-

based methods to detect the intention of movement for future 
BCI applications. This parameter could be also used to 
process EEG recordings from wearable dry electrodes. 
Devices developed for the treatment of motor disturbances, 
such as a wearable FES system for the modulation of the 
upper limb neurological tremor, might benefit from this 
approach. Moreover, the analysis presented here could be 
considered as one part of a more complex process for the 
detection of movement intention, which would take into 
account other parameters of predictions, in particular 
parameters extracted from the cortico-kinematic and the 
cortico-muscular coherence (multi-modal approach with 
redundant information sources).  
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