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Abstract— Entropy, as a measure of randomness in time-
varying signals, is widely used in areas such as thermodynamics,
statistical mechanics and information theory. This paper inves-
tigates the use of two commonly employed entropy measures,
namely Wavelet Entropy and Approximate Entropy, as a
predictor of tremor reappearance in Essential Tremor patients;
the predictor input is a raw surface-electromyographic (sEMG)
signal measured from tremor affected muscles of patients
implanted with a Deep Brain Stimulator (DBS). A combination
of both types of entropy measure is shown to successfully
predict the occurrence of tremor few seconds before its visual
manifestation. This result can potentially lead to a novel sEMG-
based adaptive on-off DBS controller that can be added on
to existing open-loop DBS systems with minimal changes; an
adaptive DBS system provides stimulation only when needed
thereby reducing the risk of brain over stimulation, delaying
DBS intolerance and prolonging DBS battery life.

I. INTRODUCTION

Essential Tremor and current open-loop DBS. Essential

Tremor (ET) is a progressive neurological disorder charac-

terized by a rhythmic tremor (4-12 Hz) that is present only

when the affected muscle is exerting effort [1] and can affect

the arms, head (neck), jaw and voice as well as other body

regions. ET is the most common movement disorder and an

estimated five million Americans suffer from the disease. The

pathophysiology of ET is not known. There is no cure for

ET at present. If the tremor is severely disabling and drugs

do not adequately relieve the symptoms, surgical procedures

such as Deep Brain Stimulation (DBS) and thalamotomy [2]

are considered. In DBS, an electric probe is placed in the

Ventral Intermediate Nucleus (VIM) of the thalamus which

is connected to a pacemaker placed near the collarbone. The

probe stimulates the VIM with pulses of electricity which

are thought to block the brain activity that causes tremor.

Despite its clinical success, the mechanisms of DBS and its

beneficial effects on ET patients are not well understood. As

opposed to thalamotomy, DBS is controllable and its effects

are reversible. Current DBS systems operate open-loop, that

is, there is no feedback to determine the optimal stimulation

parameters and/or when to stimulate. Hence, at present DBS

operates continuously and unaltered over time as long as

the battery lasts, regardless of the patients’ instantaneous

conditions and needs.

Next generation of sEMG-based closed-loop DBS. In

order to adapt to the patients’ condition, current DBS sys-

tems must be redesigned so as to include a closed-loop
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feedback control where the patients’ tremor is continuously

monitored and the stimulation adapted in response to its

variations. To design an adaptively controlled closed-loop

DBS system, it is necessary to find a suitable physiologi-

cal signal that can be easily measured and has predictive

information on tremor reappearance once DBS stimulation

is stopped. The best feedback signal would be the actual

neuronal brain activity measured from individual neurons

(micro-recording) represented by the cell firing, or a group

of neurons (macro-recording) represented by the local field

potential. However, the measurement of these signals by

means of DBS stimulation electrodes (during stimulation off

times) require changes to the current Food and Drug Ad-

ministration (FDA) approved DBS system; such a neuronal

activity-based closed-loop DBS system would then require

long testing and approval times thus delaying its commercial-

ization. Alternatively, muscular activity measured by means

of raw surface-electromyogram (sEMG) can be recorded

non-invasively from tremor affected muscles and is known

to carry predictive information on tremor reappearance [3].

Muscular activity can thus be used for adaptive on-off

control of DBS. Moreover, an sEMG-based closed-loop DBS

controller can be implemented as an add-on sub-system for

the FDA-approved DBS systems by leveraging the currently

available telemetry capabilities of DBS1. Indeed, the external

sEMG sensors and the chest-implanted neurostimulator can

exchange data through the existing telemetry/wireless link.

Advantages of sEMG. sEMG is a signal measuring

muscle activity noninvasively using surface electrodes placed

on the skin overlying the muscle [4]. sEMG has been

successfully used as the information source for closed-loop

control in several other problems, such as control of high-

above-elbow prostheses , electrical stimulation in paraplegics

[5], and to predict the onset of sleep apnea and hyperpnoea

events [6]. The authors also showed in [3] that the lower

frequency bands of sEMG, reconstructed by using a wavelet

decomposition, contains predictive information about tremor

reappearance in an ET patient with DBS implants, after

the stimulation is switched off. As opposed to information

obtained from mechanical or piezo-electric tremor sensors,

sEMG integrates information of many motor-unit action

potentials (MAUPs) in the cover-area of the sEMG sensors;

since motor unit firing builds up gradually and not instanta-

neously, this build-up is observable by sEMG before tremor

1Medtonic DBS system comprises a device called the physician program-
mer through which a clinician can adjust non-invasively the characteristics
of the electrical pulses and transmit these changes via radio telemetry to
the implanted neurostimulator.
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symptoms are experience by the patient [3]. Moreover, the

raw sEMG keeps the information over the whole frequency

spectrum of the signal, which is imperative in prediction in

control applications.

Our past work on predictive DBS control based on

sEMG power. In [3], we decomposed the raw sEMG signal

by using a Wavelet Transform (WT) and tracked the power

fluctuations over time in four frequency bands (1-32 Hz).

In some or in all the bands considered, power was shown

to drop during a DBS-on period and to remain low for a

significant amount of time during the following DBS-off

period which corresponded to absence of tremor. A gradual

power rise was shown to precede a visual reappearance

of tremor and a sudden power increase was interpreted

as voluntary movement. We successfully predicted tremor

reappearance by comparing the instantaneous power level

in frequency bands 4-8 Hz and 8-16 Hz with a (patient

dependent) threshold.

Proposed work on predictive DBS control based on

entropy index. In this paper, we propose a novel predictor

for tremor reappearance with the following goals in mind:

GOAL 1: formally design a control algorithm based on

our findings in [3] that eliminates the need of tracking the

low frequency bands and adapting/estimating thresholds for

each of them. Our goal is to find a single quantitative index

that “summarizes” the predictive information of the low

frequency bands of the raw sEMG signal.

GOAL 2: distinguish between different states a patient can

be in, namely: a) rest and no tremor, b) voluntary move-

ment and no tremor, c) tremor at rest or during voluntary

movement. With our novel predictor we aim to be able to

distinguish among these states.

We propose to use an entropy measure toward such goals.

Past work on entropy measures. Two types of entropy

index have been proposed: Wavelet Entropy to capture in-

formation relating to power shifts in different frequency

bands and Approximate Entropy to quantify the regularity and

complexity of a time series signal [8]. These two measures

are however not directly comparable. Wavelet Entropy has

been widely used for analyzing electroencephalogram (EEG)

signals to measure degree of similarity between different

segments of the signal [9], for detecting different events such

as seizures in epileptic patients [10]; it has also been used

to analyze electrocardiogram (ECG) signals for detecting

myocardial infarction [11]. It has been shown in [7] that

tremor is characterized by an increased regularity in the

corresponding sEMG signal as compared to sEMG without

tremor which can be captured by the Approximate Entropy

measure. It has also been used for similar analysis of EEG

signals [12] and heart rate signals [13].

Main Contributions. The question we investigate here is

whether either of these two types of entropy measure, or their

combination, can be used to capture the changes in power

in different frequency bands over time [3] and thus be used

to predict an impending tremor before it actually visibly re-

appears (GOAL 1) and to efficiently differentiate between

the patient’s states (GOAL 2). We show that although each

entropy measure captures similar kind of information, in-

corporating both of them makes the prediction more robust

to errors in selection of algorithm parameters and allows to

achieve both goals. We also show that the proposed entropy-

based control outperforms the power-based control in [3].

Paper Organization. The paper is organized as follows:

Section II introduces the entropy measures. Section III dis-

cusses the data recordings, the entropy calculation from the

data sets, and the prediction procedure. Section IV presents

the results of the detection algorithm and compares it with

our earlier approach. Section V concludes the paper and

points out interesting directions of future work.

II. SHANNON ENTROPY, WAVELET ENTROPY AND

APPROXIMATE ENTROPY

The (Shannon) entropy is a measure of unpredictability

and is often used to quantify the amount of order/disorder

in a signal. In information theory, the entropy of a discrete

random variable (RV) X is defined as [14]:

H(X) =−
N

∑
i=1

pi log pi (1)

where pi = P[X = xi], i ∈ {1, ...,N}, is the probability mass

function and N is the number of possible outcomes for X .

Based on (1), the Wavelet Entropy at time t of a time series

signal x(t), indicated as Hwt(t), is defined as follows [9]:

x(t) is first decomposed into N frequency bands, indicated

as {W1(t), ...,WN(t)}, using a discrete WT and then the

normalized power of Wi(t) is computed as:

Pi(t) =
|Wi(t)|

2

∑
N
j=1 |Wj(t)|2

, i ∈ {1, ...,N}.

At each time instant t, {Pi(t), i ∈ {1, ...,N}} can be treated

as a probability mass function whose entropy is given by (1)

with pi = Pi(t), i ∈ {1, ...,N}.

The computation of the Approximate Entropy, denoted

as ApEn(U,m,r), for a given time series U = {x(i), i ∈
{1, ...,L}} of length L involves two input parameters m

and r, which are the pattern length and the similarity cri-

terion, respectively. ApEn(U,m,r) is evaluated as follows.

Let x(i) = [x(i), ...,x(i+m− 1)] for i ∈ {1, ...,L−m+ 1} be

a set of length-m vector sequences constructed from U . The

ℓ∞-distance between two such sequences x(i) and x( j) is:

d∞[x(i),x( j)] = maxk=1,...,m |x(i+ k− 1)− x( j+ k− 1)|. Let:

Cm
i (r) =

∣

∣

{

j : d∞[x(i),x( j)]≤ r(L−m+ 1)−1
}
∣

∣

as number of patterns in x(i) that are similar to x( j) (given

the “similarity criterion” r), i, j ∈ {1, ...,L−m+ 1} and let:

Cm(r) = (L−m+ 1)−1
L−m+1

∑
i=1

Cm
i (r).

The function ApEn(U,m,r) is then defined as:

ApEn(U,m,r) = logCm(r)− logCm+1(r). (2)

Heuristically, given L data points, ApEn(U,m,r) approx-

imates the negative average logarithm of the conditional
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probability that two sequences that are similar for m points

remain similar within a tolerance r at the next point; a lower

ApEn(U,m,r) value reflects a high degree of regularity [8].

III. DATA SET AND METHODS

We use data obtained at the University of Illinois at

Chicago (UIC). A series of sEMG recordings were done on

a male patient, who underwent bilateral DBS implantation

in the VIM in 2002, and has dominant tremor in his arms.

The stimulation electrodes were regular implantable DBS

electrodes (considered as macroelectrodes) which were in-

serted stereotactically through an Alpha-Omega Microdrive.

The EMG equipment was a Neurotrek EMG System (Alpha-

Omega, Israel), using noninvasive sEMG electrodes placed

on the forearm muscles. There were two recording sessions

about a month apart. The skin electrodes were placed on

the patient’s forearm, noting that in this patient tremors

appeared first and almost solely on the forearms and then on

hands. Here, we present results on data recorded during the

second session. During this session, there were seven cycles

of stimulation on and off with voluntary movement such as

raising the arm and holding a glass of water and two cycles

with writing task. Each cycle consisted of a stimulation-on

duration followed by a stimulation-off duration. When the

stimulation was off, the instant when tremor visibly reap-

peared, or writing worsened, was noted and then stimulation

was switched on a few seconds after that.

The raw sEMG signal was recorded at a sampling rate of

12 KHz. The signal was first decimated to 2000 samples/s.

It was then decomposed into nine frequency bands using a

Daubechies4 wavelet. The Wavelet Entropy Hwt(t) was cal-

culated at each time point according to (1) and then averaged

over time windows of half second duration. Furthermore, the

decimated signal was low-pass filtered to retain frequency

components up to 60 Hz and this signal was used for cal-

culating the approximate entropy ApEn(U,m,r). Following

[13], we set m = 2, N = 1000 (0.5 s window), r = 0.15σ ,

where σ is the standard deviation (SD) of the corresponding

windowed signal. The detection algorithm using either of

the entropy measures involves finding an upper and a lower

threshold and predicting an impending tremor whenever the

entropy of the sEMG during the stimulus-off period lies in

between these two thresholds for at least two consecutive

windows (i.e for at least 1 s) and the absolute difference

between the entropy at these consecutive time points must

be lesser than a tolerance value which is estimated as the SD

of the entropy of the sEMG measured during the preceding

stimulus-on duration. The upper and the lower thresholds can

be estimated from sEMG measured at rest and with voluntary

movements when there is no tremor. These are expected to

change over time with the progression of the disease and

should be re-calculated offline after certain intervals (of the

order of weeks/months). The lower threshold is required to

prevent false detections due to voluntary movement without

tremor. This algorithm was applied to both the entropy

measures calculated from the seven cycles of recorded sEMG

and the results are tabulated in the following section.

IV. RESULTS

In each recording cycle, the prediction algorithm described

in Section III was applied to the entropy values calculated

over an interval Tp, where Tp is the time interval during

which the stimulation was off until tremor visibly reappeared

and up to an additional two seconds following this event.

Additionally, a prediction based on the power in frequency

bands 4-8 Hz and 8-16 Hz was done as in [3] to compare per-

formance with the novel entropy-based prediction scheme.

Table I shows the results with the Wavelet Entropy Hwt(t)
and with the approximate entropy ApEn(U,m,r) considered

separately and jointly, along with those with the power-based

prediction of [3] (all times are expressed in seconds). Note

that in the 3rd cycle, there are two time instants, 152 s and

163 s respectively, when tremor was visibly detected. The

later instant corresponds to greater tremor than the former.

The mean of the maximum and minimum entropy values

over the stimulus-on periods over the 7 cycles were 0.5

and 0.04 for ApEn(U,m,r) and 0.6 and 0.12 for Hwt(t),
respectively. Based on results in [7] a margin of 0.1 below

the mean maximum entropy was allowed for determining

the upper threshold and to prevent any confusion with

voluntary movement, a larger margin of [0.26-0.28] was

allowed for estimating the lower threshold. The upper and

the lower thresholds for Hwt(t) were thus set to 0.5 and

0.4, respectively, while those for ApEn(U,m,r) where set to

0.4 and 0.3, respectively. Missed Detection (MD) in Table I

means that tremor was not predicted during the interval Tp.

From the tabulated results, we see that by using Hwt(t)
there is correct detection in 5 out of 7 cycles. In the

2nd cycle, tremor is detected after its visible appearance

while in the 3rd cycle there was missed detection over

the period considered. On the other hand if we use the

ApEn(U,m,r) alone, there is missed detection in the 5th

and 7th cycle. However, if we use both entropy measures

and declare a detection if either measure detects a tremor,

that is if we consider the union of each independent detection

result, then we can get detection in all the cycles at least a

few seconds before actual tremor visibly appears (column

labeled “joint detection”). For comparison, also the times

from the power-based prediction algorithm of [3] are reported

(column labeled “power detection”). We can see that the joint

detection algorithm performs better than the power based

one as the former predicts an impending tremor closer to

the actual tremor appearance time than the later for all the

cycles except for the first one.

Fig. 1 shows the entropy values over portion of the

stimulus-off duration for cycles 2 and 5. It depicts for these

two cycles how the detection is more robust to the selection

of the threshold values when both the entropy measures

are used. During cycle 2, it can be seen that at around

89 s, two consecutive points of the ApEn(U,m,r) lie very

close to each other inside the detection band. However, for

Hwt(t), at around 90 s, there are three consecutive points

close to each other with the 2nd point just missing the lower

threshold. Hence, if the lower threshold were lower, there
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TABLE I

TREMOR REAPPEARANCE PREDICTION TIMES IN SECONDS. MD:MISSED

DETECTION, *: CYCLES WITH WRITING TASKS.

# stim. visible ApEn Hwt(t) joint power
off tremor detection detection detection detection

1 40 45 42 45 42 44.5

2 85 91 89 92.5 89 88

3 146 152,163 151,158 MD 151,158 148

4 200 231 225 227 225 202

5 271 300 MD 293.5 293.5 273

6 360 389 389 382 382 365

7 440 454 MD 446 446 442

8* 503 509 504 504 504 504

9* 581 596 593 594.5 593 583

84 86 88 90 92
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Fig. 1. ApEn (top) and Hwt(t) (bottom) during stimulus off interval for
cycles 2(left) and 5(right). The solid horizontal lines denote the upper and
lower threshold values used for predictions. The solid vertical lines indicate
the time of tremor while the dashed vertical lines indicate time tremor
predicted.

would actually be detection at this point. Similarly, in cycle

5, at around 292-294 s, there are four consecutive points

in the ApEn(U,m,r) plot. There is a missed detection at

this instant due to the upper threshold being lower than

required for a successful detection. This is however taken

care of by the Hwt(t). Thus, by taking the minimum between

the tremor predicted time by either measure we neither get

missed detection nor delayed detection.

We have designed a tremor prediction algorithm based

on an entropy measure (GOAL 1) and have avoided false

prediction due to presence of voluntary movements by using

a lower threshold in the algorithm (GOAL 2). However,

GOAL 2 has been addressed in a simple way and requires

further work for more complex actions.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that entropy-type measures,

specifically Wavelet and Approximate Entropy, can be used

to design an effective adaptive controlled on-off DBS sys-

tem where the stimulation is switched on when tremor is

predicted to reappear. We also showed that a combination of

both the entropy measures leads to the design of a more

robust predictor which outperforms previously proposed

power-based predictor. This result can potentially lead to a

novel sEMG-based adaptive on-off DBS controller which

would provide stimulation only when needed and can be

added on to existing open-loop DBS systems with minimal

changes. We are currently recruiting more patients for testing

the proposed detection algorithm on a wider range of dataset.

As a direction of future work, we will look at adaptively

modifying the prediction thresholds of the entropy-based

predictor and to quantify the effect on the prediction time of

the number of frequency bands used for the Wavelet Entropy

and of the input parameters for the approximate entropy.

We will also address GOAL 2 in more depth by classifying

different states and complex actions based on entropy values.

An artificial neural network can also be employed, using

inputs from both the entropy parameters of this paper and the

wavelet parameters [3], for combined prediction benefiting

from both sets of parameters.
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