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Abstract— We develop the methodology for hypothesis testing
and model selection in nonhomogeneous Poisson processes, with
an eye toward the application of modeling and variability
detection in heart beat data. Modeling the process’ non-constant
rate function using templates of simple basis functions, we
develop the generalized likelihood ratio statistic for a given
template and a multiple testing scheme to model-select from
a family of templates. A dynamic programming algorithm
inspired by network flows is used to compute the maximum
likelihood template in a multiscale manner. In a numerical
example, the proposed procedure is nearly as powerful as the
super-optimal procedures that know the true template size
and true partition, respectively. Extensions to general history-
dependent point processes is discussed.

Index Terms— point processes, nonhomogeneous Poisson pro-
cesses, nonparametric detection, dynamic programming, mul-
tiple comparisons, heart rate analysis

I. INTRODUCTION

A variety of quite different systems produce data con-
sisting of occurrences in time (or space) of well identified
events, although not taking the classical form of continuous-
time signals X(t) or time series Xn. In medicine and
biology, this is notably the case for heart beat rhythm data
[1], [2], [3] and neuron discharge spike trains [3], [4].
Other examples from science and engineering are numerous:
IP packet flows in internet traffic [5], [6]; optics, with
light photon counts; geophysics, with stick-slip mechanisms
or earthquake epicenter locations (space) and occurrences
(time). The characterization of the systems producing such
data relies on the analysis of these lists of occurrences
which are often modeled mathematically as point processes.
Their theoretical properties, as well as corresponding signal
processing analysis tools, have been studied thorougly over
the past decades (see, e.g., [7], [8] and references therein).

In point processes, stationarity corresponds to the con-
stancy along time (or space) of the rate of occurrences
of events. Here we address the non-stationary situation
using a non-homogeneous Poisson process model [8] with
methodology based on the Generalized Likelihood Ratio
(GLR). Our original approach is based on modeling the
non-constant rate with a set of elementary functions, and
finding the best approximations within this class with an
efficient network flow algorithm. The obtained solution is
data-driven (i.e., adaptive) and multiscale, as well as weakly
dependent on arbitrary parameters. This method is detailed
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in Section II. In Section III, this approach is tested via
Monte-Carlo simulations of synthetic data consisting of
nonhomogeneous Poisson process and is shown to provide
practitioners with a methodology to test rate constancy using
an efficient algorithm. Section IV discusses applications to
the analysis of heart beat intervals.

II. METHODOLOGY

Assume we observe data from a counting process N(t)
in a fixed time interval (0, T ], where T is a constant chosen
a priori. That is, N(t) is the number of events in the time
interval (0, t], where N(0) = 0 by convention. Denote the
series of event times by {τi : i = 1, . . . , N(T )}, where
the times are in increasing order: τi < τi+1 for all i. Let
fm(t | Hm−1) be the conditional distribution of the m-th
event given τi, i = 0, . . . ,m − 1. Here Hm−1 denotes the
history of the process for the time period (0, τm−1].

The methodology that follows (and is motivated by ideas
in [9], [10]) is based on using simple models to fit the point
process locally to capture its local behavior (or short term
history dependence). The global behavior, or long term
history dependence, is handled through global optimization
by chaining together local fits in a meaningful way.
Although we will describe the framework in the context
of nonhomogeneous Poisson processes, the underlying
idea can be extended and tailored to other types of point
processes, such as RR interval data in heart rate analysis
(see discussion in Section IV).

Nonhomogeneous Poisson Processes. A nonhomoge-
neous Poisson process with a positive rate function r(t)
is a counting process {N(t), t ≥ 0}, where N(t) is the
number of events in the time interval (0, t] and satisfying:
(i) N(0) = 0; (ii) for disjoint intervals [t0, t1] and [s0, s1],
N(t1) − N(t0) and N(s1) − N(s0) are independent; (iii)
the probability of observing m events in the interval (t0, t1]
is P (N(t1) − N(t0) = m) = (m!)−1e−R(t0,t1)R(t0, t1)m,
where R(t0, t1) :=

∫ t1
t0
r(t)dt. That is, N(t1) − N(t0),

0 ≤ t0 < t1, is distributed as Poi(R(t0, t1)).
It is easy to show that the conditional distribution of the m-

th event given the historyHm−1 is given by fm(t | Hm−1) =
e−R(τm−1,t)r(t). This equation holds for m = 1 with the
convention τ0 = 0. The joint probability density of observing
events at the times τ1, . . . , τN(T ) in the interval (0, T ] can
be expressed as (see, e.g., [7])

f1,...,N(T )(τ1, . . . , τN(T )) = e−R(0,T )

N(T )∏
m=1

r(τm). (1)
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Given data {τn : n = 1, . . . , N(T )}, we can use (1) to cal-
culate the likelihood of different models of the rate function
r(t) and motivate choices for goodness-of-fit measures. The
log-likelihood function for this data is

l(r|τ1, . . . , τN ) =

N∑
m=1

log(r(τm))−
∫ T

0

r(t)dt. (2)

Assume the rate function r(t) belongs to a given functional
class F (possibly nonparametric, e.g., a class of smooth
curves, etc.). In practice, the class F would typically be
based on the prior knowledge one has about the system
under consideration; for example, physiological restrictions
in the case of biomedical applications.

Maximum Likelihood Principle. Given data {τn : n =
1, . . . , N}, the maximum likelihood estimate (MLE) of the
rate function is the r̂ ∈ F maximizing the log-likelihood
function in (2), i.e.,

r̂ = arg max
r∈F

l(r|τ1, . . . , τN ). (3)

Unless the functions in F have similar complexity there is a
need for adding some some regularization to the functional
in the optimization problem (3); otherwise there is a risk of
overfitting the data, resulting in an estimator with large vari-
ance. Letting Λ(r) be a functional measuring the complexity
of r (i.e., Λ(r) is large for “complex” r, in some sense), one
could consider the restricted log-likelihood problem

r̂Λ,Λ0 = arg max
r∈F, Λ(r)≤Λ0

l(r|τ1, . . . , τN ), Λ0 > 0. (4)

In general, optimization problems of the type (3) and
(4) can be very difficult or impossible to solve. Here we
take the simplifying approach of approximating F with
simplified sets F̃ of models which, if chosen correctly, can
lead to a computationally tractable optimization problem
that approximates the general problem.

Linear Combinations of Templates. Consider models r̃
of the form

r̃(t) = r̃V (t) =
∑
i∈V

αigi(t), (5)

where V is a finite set of indices, (αi) is a sequence of
scalars, and gi is a template supported on a given interval
Ii. For example, the templates gi in (5) could be members
of classic function bases (e.g., wavelets, B-splines, etc.) or
piecewise linear functions.

Assume that the templates (gi)i∈V in (5) have disjoint
time supports Ii. Inserting r̃ into (2) gives

l(r̃|τ1, . . . , τN ) =

N∑
m=1

log(r̃(τm))−
∫ T

0

r̃(t)dt

=
∑
i∈V

[
ni log(αi) +

∑
m: τm∈Ii

log(gi(τm))− αi
∫
Ii

gi(t)dt

]

where ni = #{τm ∈ Ii} is the number of events occurring
in the time interval Ii. As a measure of the goodness-
of-fit of r̃ to the data, we use the generalized likelihood
principle, and maximize l(r̃|τ1, . . . , τN ) with respect to the
coefficients (αi)i∈V . This leads to the unrestricted MLE
α̂i = ni(

∫
Ii
gi(t)dt)

−1 and the generalized log-likelihood
function

G(r̃|τ1, . . . , τN ) := max
(αi)i∈V

l(r̃ | τ1, . . . , τN ) =
∑
i∈V

c(i)

where c(i) := ni log(ni)− ni − ni log

(∫
Ii

gi(t)dt

)
+
∑
τm∈Ii

log(gi(τm)).

We interpret c(i) as the local fit of the template gi to the data.

III. HYPOTHESIS TESTING WITH PIECEWISE CONSTANT
TEMPLATES

As above, assume that we observe a nonhomogeneous
Poisson process on a fixed, known interval (0, T ] with
unknown rate function r(t). We wish to test

H0 : r(t) = α, versus H1 : r(t) = α+ µ(t), (6)

where α > 0 is an unknown constant and µ(t) is a piecewise
constant function with mean zero over (0, T ], not identically
zero. Note that we assume nothing further about µ(t), e.g.,
the number and positions of the points where µ(t) changes
levels and the levels themselves are all unknown.

GLR for Fixed Partition. Fix a partion P = {Ii}Li=1 of
(0, T ] composed of left-open, right-closed intervals and sup-
pose the rate function is of the form r(t) =

∑L
i=1 αi1Ii(t),

where αi are unknown. Abusing our notation in (2),
we write the log-likelihood function as l(α1, . . . , αL) =∑L
i=1 (ni logαi − αi|Ii|), and note that ni ∼ Poi(αi|Ii|)

are independent. Then the unrestricted MLE is α̂i =
ni/|Ii| and the H0-restricted MLE is α̃ = N/T , where
N =

∑L
i=1 ni. This gives the log-GLR statistic S(P ) :=

l(α̂1, . . . , α̂L)− l(α̃, . . . , α̃) as

S(P ) =

L∑
i=1

ni log(ni/|Ii|)−N log(N/T ). (7)

Under H0 and assuming α · mini |Ii| to be large,
ni ≈ N(α|Ii|, α|Ii|), and this can be used to show
that 2S(P ) is approximately χ2

L−1 under H0, which is also
observed in Monte Carlo simulations.

Model Selection and Algorithms. In practice one would
typically not know the size L of the partition or the size
|Ii| of the intervals. Here we give an adaptive method and
algorithm for estimating these.

Assume that ∆t > 0 is the length of the smallest possible
interval size in any partition under consideration (i.e., ∆t
sets the finest analysis scale) and assume that T = M∆t,
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for some integer M . The partitions considered will be of the
form {Ii}Li=1, L ≤M , where

Ii = (ki ∆t, ki+1 ∆t],

with 0 ≤ ki < ki+1 ≤M , 0 ≤ i ≤ L− 1. Let P denote the
finite set of partitions of (0, T ] constructed this way. First
assume we have assigned a local cost c(I) to each interval
I = (k′∆t, k∆t], 0 ≤ k′ < k ≤ M . The goal is to solve
the optimization problems

C(L) = max
P∈P,#P=L

∑
I∈P

c(I) (8)

where the maximization is done over all partitions P ∈ P
of size L, 1 ≤ L ≤ Lmax ≤M .

The following Algorithm 1 for finding the optimal par-
tition is based on dynamic programming and ideas from
the network flows [11] literature. Let dk(`) be a distance
label which stores the cost of the tentative optimal partition
of size `, 0 ≤ ` ≤ k, for the interval (0, k∆t]. We also
let predk(`) = k′ be the time index which precedes the
index k in the tentative optimal partition of size ` of the
interval (0, k∆t]. For each left-endpoint t = k′∆t, let Ak′
be the set of right-endpoint indices for intervals (k′∆t, k∆t]
under consideration. When it terminates, dk(`) consists of
the optimal partition cost of (0, , k∆t] using ` intervals and
predk(`) is the time index which precedes time index k for
this partion. Thus, Algorithm 1 finds the best partitions of
sizes ` = 1, . . . , Lmax in just one sweep over the set of time
indices k′ = 0, . . . ,M − 1.

Algorithm 1 Calculation of Optimal Partition
Initialize distance labels:
Set d0(·) = 0 and dk(·) = −∞ for k = 1, . . . ,M
Update distance labels by marching forward in time:
for k′ = 0, . . . ,M − 1

for all k ∈ Ak′ (the set of ks in intervals (k′∆t, k∆t])
set I = (k′∆t, k∆t] and calculate c(I)
for ` = 1, . . . , Lmax

if dk(`) > dk′(`− 1) + c(I)
dk(`) = dk′(`− 1) + c(I)
predk(`) = k′.

The computational complexity is directly proportional
to the number of subintervals of (0, T ] we consider.
For example, if we include all intervals (k′∆t, k∆t],
0 ≤ k′ < k ≤ M , we have O(M2) = O(T 2(∆t)−2)
intervals. Note that since the algorithm marches forward
in time, it has the potential to being adapted to online
processing of data; this property is useful, for example, in
heart rate monitoring. Also, since no type of “orthogonality”
exists it is not possible to solve (8) using a greedy tree
algorithm by subsequent splitting of branches. That is, if
P ∗L is the optimal partition using L segments, then P ∗L−1

is not necessarily retrieved by joining two intervals in P ∗L,
i.e., pruning the tree.

Multiple Comparisons and Proposed Hypothesis Test.
Given data (τ1, . . . , τN ), we calculate C(L) for a number
of different values of L = L1, . . . , LK and estimate the
P -value Pk for C(Lk), k = 1, . . . ,K, by Monte Carlo
simulation under H0. Since the intervals corresponding to
different Lk overlap, P1, . . . , PK are dependent and, under
H0, not simply K independent Unif[0, 1] variables as in the
usual univariate case. Under H1, we would expect to observe
low P -values for the coordinates of C corresponding to
models whose complexity is close to the one of the true
µ(t). Therefore it seems reasonable to look for evidence
against H0 by considering the minimum observed P -value
P ∗ := min(P1, ..., PK), whose distribution under H0 – and
hence critical value – can be estimated by Monte Carlo.

Numerical Experiment. As a numerical exampe, we con-
sider the testing problem (6) and use Monte Carlo to evaluate
our proposed test. We use a standard synthesis method based
on time rescaling to generate point processes on the time
interval (0, T ] (see, e.g., [7]). In all the simulations we take
T = 1024 and α = 1. For our statistic C we take Lk
for k = 1, . . . , 7 = K as 2, 3, 4, 8, 16, 32, 64, respectively;
this choice covers a large range of segmentation sizes Ls
using few values (considering the full range L = 1, . . . , 26

imposes difficulties in using Monte Carlo simulations for
simulating the joint distribution of C). The smallest time
interval considered is taken to be ∆t = T/29 = 2.

For comparison we consider two other statistics: (i) C(L)
in (8), where the true number of partitions L under H1 is
assumed to be known; (ii) S(P ) in (7) which knows the true
partition P under H1 exactly. For simulations under H1, we
consider two examples with β > 0:

(a) µ1(t) = β(1[0,T/2](t)− 1(T/2,T ](t));
(b) µ2(t) = β(1[0,T/2](t)−3 ·1(T/2,3T/4](t) + 1(3T/4,T ](t)).

The example µ1(t) describes a change-point problem where
the system being monitored changes state in the middle of the
observation, while µ2(t) models a sudden “dip” in rate and
then returns to the previous rate. In the context of fetal heart
rate monitoring, these examples can be thought of as ideal
models of tachycardia and a deceleration [12], respectively.

The mean variance µ2 := T−1
∫ T

0
µ2(t)dt gives a mea-

sure of µ(t) from constancy: the smaller µ2, the more
difficult H1 will be to detect. In the examples above, the
mean variance is µ2

1 = β2 for µ1, and µ2
2 = 3β2 for µ2,

both proportional to β2.
The number of Monte Carlo realizations under H0 were

10,000 for each statistic. For the alternatives, the number
of realizations were 1,000 for each different value of µ2.
Monte Carlo was performed under H0 to choose thresholds
so that the Type I error probability was 5%. Fig. 1 shows the
detection rates, i.e., the power, as the mean variance µ2 is
varied. We see that the price paid for being adaptive is low:
to reach detection rate of 95%, the proposed multivariate
statistic needs the mean variance µ2 to be about 10% greater
than for C(L) where L is taken to be known; the ratio is
about 30% when compared to the statistic which knows the
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Fig. 1. Detection rates vs. µ2 for P (Type I error) = 5%. Left: r(t) =
α+ µ1(t). Right: r(t) = α+ µ2(t). Labels: ‘�’ for S(P ) from (7) with
partition P known; ‘*’ for C(L) in (8) with L = 2; ‘◦’ for P ∗ statistic
based on C = (C(L1), . . . , C(LK); ‘4’ corresponds to C(8) for µ1 and
to C(2) for µ2.

segmentation exactly. Fig. 1 also shows that the proposed
model selection is helpful: the detection rates using C(8) –
an overly complicated model for the one-step alternative µ1

– are worse than for the proposed test; using C(2) when the
truth is µ2 (so that “correct” model corresponds to L = 3)
is also not as good as the more adaptive test.

We observed that in the critical range µ2
2 ∈ [0.025, 0.045]

(break-down of power for µ2(t)), the minimum P -value
in our proposed statistic was achieved at the “correct”
coordinate C(Lk = 3) in around 60–70% of the realizations.
For µ1(t), the proportion of realizations where the minimum
P -value was achieved at C(Lk = 2) rose steadily from 70%
to almost 100% as µ2

1 was increased from 0.01 to 0.025.

IV. CONCLUSIONS AND PERSPECTIVES

Point processes that are history dependent make modeling
using Poisson processes inappropriate. Much real data of
interest violates the independence property of Poisson pro-
cesses. Nevertheless, the above framework can be adapted to
this setting by using the same guiding philosophy: (i) analyze
local behavior of the point process through local fits c(i) of
a multiscale set of templates gi; (ii) analyze global behavior
by “chaining” together local fits.

Define ym = (∆τm)−1, ∆τm =, m ≥ 1, τ0 = 0, and
consider the time series (τm, ym); this type of transformation
of point process into time series is very popular in processing
RR-intervals in heart rate analysis. Instead of modeling the
inter-arrival times ∆τm or the conditional distribution of the
m-th event, one could consider modeling ym. One possibility
is to consider additive noise models

ym = µm + zm, m ≥ 1, (9)

where µm = µ(τm) and µ is some unknown function;
(zm) is a sequence of possibly correlated random variables.
The problem is now to learn about µ and zm given the
observations (τm, ym), and this is a classical function es-
timation problem involving time series. Note that the time
∆τm between samples is uneven, so many popular signal
processing tools cannot be directly applied to the problem
(e.g., Fourier analysis and wavelet based methods). In the

time series model (9), the function µ could be interpreted
as the trend, responsible for the underlying “large scale
structure” of the process. The sequence (zm) can be thought
of as variability, or “small scale fluctuations,” of the process.

The model (5) can be generalized by taking αi = 1 but
allowing gi to include unknown parameters to be estimated.
The log-likelihood is still a sum

∑
i∈V c(i) of local fits but

where c(i) =
∑
τm∈Ii log(gi(τm)) −

∫
Ii
gi(t)dt. Models of

this form can be useful when one wants to impose some sort
of regularity condition like continuity. For example, suppose
the class of rate functions F can be well approximated by
near-continuous piecewise linear functions. Then a discrete
set of linear templates gi(t) = (at + b)1I(t) would be
appropriate. Models of this form have been considered in the
context of time series data in [10] for oscillatory signals and
[12] for fetal heart rate times series, and the framework and
algorithms therein are therefore extendible to the analysis of
point processes by replacing the local fits.

In future works we will investigate the proposed frame-
work by adapting local fits to models of type (9) for
applications to heart rate analysis. There we would like to
compare the methodology with other appealing approaches,
such as those developed in [13], which are based on time-
varying autoregressive modeling.
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