
  

  

Abstract— We present a novel, automatic point-process 
approach that is able to provide continuous, instantaneous 
estimates of heart rate variability (HRV) and respiratory sinus 
arrhythmia (RSA) in long duration data recordings such as 
those during an entire night of sleep. We analyze subjects with 
and without sleep apnea who underwent diagnostic 
polysomnography. The proposed algorithm is able to quantify 
multi-scale high time resolution autonomic signatures of sleep 
fragmentation, such as arousals and stage transitions, 
throughout an entire night. Results demonstrate the ability of 
our methods to track fast dynamic transitions from sleep to 
wake and between REM sleep and other sleep stages, providing 
resolution details not available in sleep scoring summaries. An 
automatic threshold-based procedure is further able to detect 
brief arousals, with the instantaneous indices characterizing 
specific arousal dynamic signatures. 

I. INTRODUCTION 
LEEP architecture is characterized by transitions among 
REM and NREM sleep stages and Wake within the sleep 
episode. Human studies suggest that sleep fragmentation 

may have behavioral and physiological consequences similar 
to sleep deprivation [1]. Fragmentation of sleep can be 
manifest in various ways, including increased transition 
frequency within sleep, transitions to wakefulness, or brief 
arousals (<15 seconds) not meeting scoring criteria for wake. 
Given the poor relationship of subjective sleepiness with 
objective sleep architecture metrics (including apnea 
severity) [2], there is increasing interest in complementary 
approaches to understanding sleep architecture and 
fragmentation. Autonomic fluctuations, typically extracted 
from time series analysis of ECG signal, have yielded 
important insights into sleep physiology in health and 
disease. For example, algorithms based on ECG have been 
implemented for sleep staging and for detection of sleep 
apnea [3]-[7], and ECG-autonomic measures have been 
correlated with apnea severity [8]. Heart rate variability is 
the best-studied metric, with high frequency oscillations (at 
the respiratory frequency) representing parasympathetic 
activity, and low frequency oscillations being affected by 
both sympathetic and parasympathetic factors. 
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Currently, classification of an arousal requires 3-15 
seconds of increased EEG frequency in NREM sleep, but 
questions remain regarding scoring inter-rater reliability, 
comparisons with automated EEG analysis, and the 
relationship of these arousals to clinical symptoms [9]-[11]. 
Another important challenge is how to study human 
physiology over time in the patient’s natural environment, 
rather than in a clinical or experimental setting. ECG has the 
advantages of being unobtrusive and less variable than EEG, 
and allowing repeated recordings to capture variability that 
may contain clinically useful information.  

We here apply a novel point-process approach to provide 
continuous, instantaneous estimates of heart rate variability 
(HRV) and respiratory sinus arrhythmia (RSA) in long 
duration data recordings such as those during an entire night 
of sleep. We analyze subjects with or without sleep apnea 
who underwent diagnostic polysomnography to explore, 
with variable time resolution, autonomic signatures of sleep 
fragmentation such as arousals characterized by ECG-based 
cardiorespiratory (CR) metrics (CR Arousals), and stage 
transitions throughout an entire night. 

II. METHODS 
A. Experimental Protocol 

Polysomnogram data was obtained from the MGH sleep 
clinic, where subjects underwent overnight monitoring for 
clinical purposes. Standard recording montage included EEG 
(6 leads), EMG (chin and bilateral leg), ECG, respiratory 
effort and airflow. The ECG was a single lead placed on the 
left antero-lateral chest, referenced to a lead placed on the 
right mid-upper chest. Sleep scoring was performed by 
experienced technicians using EEG, EMG and EOG 
according to the American Academy of Sleep Medicine 
guidelines. Signals were sampled at 200Hz, de-identified 
data were exported for off-line analysis. R-events were 
identified in the ECG by using a semi-automated procedure. 
B. The Evenly-Sampled Point Process Model 

A novel algorithm is applied to the R–R series to compute 
instantaneous estimates of HRV and RSA from ECG 
recordings of R-wave events. This approach is based on the 
point process methods already used to develop both local 
likelihood [12] and adaptive [13] heart rate estimation 
algorithms. The stochastic structure in the R–R intervals is 
represented by a time-varying model where the probability 
density of observing a beat at time ߬, given the previous beat 
at time ݑ௞, and the time-varying model at time ݐ, is an 
inverse Gaussian (IG) renewal process: 
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where ߤሺ߬,  ,ሻ is the instantaneous mean of the distributionݐ
while ߠሺݐሻ is the shape parameter of the IG distribution. 

The IG probability density is derived directly from an 
elementary physiologically-based integrate-and-fire 
model [12],[13]. The model also represents the dependence 
of the R–R interval length on the recent history of 
parasympathetic and sympathetic inputs to the SA node by 
modeling the mean ߤሺ߬,  ሻ as a uniform time-sampledݐ
regression on the respiratory signal and on a continuous 
estimate of the previous R–R intervals: 

,ሺ߬ߤ ሻݐ ൌ ܽ଴ሺݐሻ ൅෍ܽ௜ሺݐሻ ܴ෪ܴ ሺ߬ െ ݅Δ, tሻ
௉

௜ୀଵ

൅෍ܾ௜ሺݐሻ ܴܲሺ߬ െ ݅Δሻ
௉

௜ୀଵ

 

where P is the order of the model, Δ is an arbitrary sampling 
period, ai and bi are the time-varying model coefficients, RP 
is the observed respiratory signal, and ܴ෪ܴ  is the continuous 
estimate of the previous R–R intervals. The ܴ෪ܴ ሺ߬,  ሻ isݐ
modeled by a cubic Hermite spline estimate whose control 
points are the observed R-events up to time t, with tangent 
values evaluated as a three-point difference. An important 
advantage of this model is that the estimate is causal and can 
be updated online as new R events are observed. This choice 
is compatible with our ultimate goal of building an online 
real-time monitor of HRV and RSA. 

A local maximum likelihood method [12],[14] was used 
to estimate the unknown time-varying parameter set 
ߦ ൌ ሼሼܽ௜ሽ௉, ሼܾ௜ሽ௉,  ሽ. The local log-likelihood at each time tߠ
is the weighted sum of the IG density function above, 
݂ሺݑ௞ାଵ, ,௞ݑ  ሻ, evaluated at each heartbeat recorded in anݐ
observation interval ሺݐ െ ݈,  ሿ of duration ݈. Even when theݐ
last RR interval was not completely observed, it was 
accounted for in the estimation of ߦ by means of a right 
censoring term [12]. So, given a sequence of observed beats 
ሼݑ௞ሽ, the log-likelihood of the parameter set ߦ is: 

௧ି௟:௧ሻݑ|ߦሺܮ ൌ ෍ wሺt െ ,௞ݑ௞ሻ log ൫݂ሺݑ ,௞ିଵݑ ሻ൯ݐ
ேሺ௧ሻ
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where ܰሺݐሻ is a function that returns the number of events 
up to time ݐ and wሺt െ ௞ሻݑ ൌ 0.98୲ି௨ೖ is an exponential 
weighting function for the local likelihood. 

This model provides two critical improvements over the 
approaches in [14],[15]. First, because the regressors are 
uniformly sampled at step Δ rather than at the heartbeats, the 
transformation in the frequency domain does not incur into 
spectral distortions due to the inherently non-uniform 
sampling. Second, the regression is further defined in 
continuous time (߬), thus overcoming discontinuities 
characteristic of previous discrete applications. At the same 
time, as the likelihood weights the probability at the beats, 
this model preserves the point process nature of the sequence 
of R events which is otherwise lost when using methods 
based on interpolated R-R time series. 

C. Spectral indices of HRV and RSA 
The set of coefficients ai and bi allows for estimation of 

the spectral power (HRV) and further decomposition into 
classic low frequency (LF, 0.04-0.15 Hz) and high frequency 

(HF, 0.15-0.5 Hz) spectral components as well as evaluation 
of the respiratory sinus arrhythmia (RSA). 

We defined the RSA as the average transfer function 
between the respiratory input RP and the RR interval on the 
HF band (0.15-0.4 Hz) weighted by the cross-spectrum 
between the two: 

ሻݐሺܣܴܵ ൌ
׬ ,ோ௉՜ோோሺ߱ܪ ,ሻ ܵோ௉,ோோሺ߱ݐ ߱݀ ሻݐ
ఠಹಷశ
ఠಹಷష

׬ ܵோ௉,ோோሺ߱, ߱݀ ሻݐ
ఠಹಷశ
ఠಹಷష

 

The transfer function between the respiratory input RP and 
the RR interval ܪோ௉՜ோோሺ߱,  ሻ could be found from theݐ
model parameters as: 

,ோ௉՜ோோሺ߱ܪ ሻݐ ൌ
∑ ܾ௜ሺݐሻିݖ௜௉
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The cross-spectrum ܵோ௉,ோோሺ߱,  :ሻ was evaluated asݐ
ܵோ௉,ோோሺ߱, ሻݐ ൌ ,ோ௉՜ோோሺ߱ܪ ,ሻ ܵோ௉ሺ߱ݐ  ሻݐ

where the spectrum ܵோ௉ሺ߱,  ሻ of the respiratory input wasݐ
estimated on the same observation window using a 
univariate autoregressive model of order P. 

This point process recursive algorithm is able to estimate 
the dynamics of the model parameters, and consequently the 
time-varying behavior of each spectral index, at any time 
resolution. This new continuous model for deriving HRV 
and RSA measures has been cross-validated with standard 
time-frequency domain approaches for HRV analysis as well 
as previous point process algorithms [12],[13]. The dynamic 
response for the point process method is found to provide a 
significant improvement over other methods in tracking fast 
dynamic changes [13]. A fixed order P=8 and a sampling 
period Δ=0.8s were chosen for the analysis. Indices were 
updated every 5 ms using the information available up to 
that time point. The algorithm could be virtually run in real-
time and has linear complexity with recording length: 
processing 8-h of data took, on average, 35 min. 

III. RESULTS 

A. Characterization of the sleep stages 
We present results from a total of 6 subjects, 3 classified 

as healthy, and 3 diagnosed with sleep apnea. Fig. 1 shows 
~8 hours of data from one subject from each group (healthy 
on the left panel). The trends from the instantaneous indices 
follow dynamics consistent with the transitions reported by 
the sleep scoring, as further confirmed by the averaged 
results reported in Table I for NREM2 and REM sleep (the 
most frequently occurring stages). Statistical comparison 
between the two stages in both groups pointed at RSA and 
HF as the most discriminating indices. In distinguishing the 
two groups, it is worth noting the overall RSA increase in 
the healthy subject during the second part of the night where 
CR arousals are rare, which is not evident in the subject with 
apnea. In fact, the average RSA computed during stable 
NREM2 and NREM3 sleep in the second half of the night 
more than doubles for the healthy subject, whereas it shows 
a slight decrease for the apnea subject. 

B. Sleep-Wake transitions 
Figure 2 shows a series of transitions within a 900s time 

scale, from deep sleep (NREM3) to Wake at around 300s, 

7736



  

back to NREM2 at around 420s, and from NREM2 to Wake 
at 720s then back to NREM2 at 860s after a transient period 
in NREM1. The instantaneous indices (RSA, LF/HF and Var 
HR), here sampled at a 5 ms high resolution, provide clear 
dynamic signatures associated with changes in sleep state, 
often largely anticipating the sleep scoring markers, even 
earlier than the 30s epoch needed for the scoring procedure 
to provide the next scoring index. In particular, in the RSA 
index, a sharp drop in RSA anticipates the change in scoring 
at 300s by 40s, and the transition at 720s by at least 60s. 
Note also the clear increasing trend of RSA after the second 
transition, starting at around 430s until the sharp drop at 
660s preceding (or indicating the more precise transition 
time) the second transition to wake. 

C. Transitions from Non-REM to REM 
Figure 3 shows a transition from NREM2 to REM sleep 

within a 900s time scale occurring, according to the sleep 
scoring index, at around 410s. Here the RSA index starts 

dropping sharply from values around 100s to values close to 
zero at around 330s, which is 90s before the indication of a 
transition to REM by the scoring index. Between 330s and 
500s the RSA shows more complex dynamics, including a 
sharp variation at the time where the scoring index reports 
the transition. Except brief moment of sharp variations, 
possibly indicating arousals during REM, RSA stabilizes 
around lower values along the REM period, while the LF/HF 
index points at an increased sympathovagal modulation 
shifting towards a sympathetic-driven tone, characteristic of 
the REM state. 

D. Characterization of Cardiorespiratory Arousals 
For this analysis, CR arousal times are defined as the 

times where RSA values fall below a statistically-determined 

 
Fig. 1. From top to bottom, the plots show the sleep stage (W=Wake, R=REM Sleep, N1-N3= different stages of NREM sleep), the respiratory input, the 
series of RR intervals, the RSA, the LF/HF index, and the residual variance of heart rate for one healthy subject (left) and one patient diagnosed with apnea 
(right),. The indices are averaged within the 30s scoring epochs to provide proper dynamics at the long time scale correspondent to the entire night The red 
stars mark times where the RSA value fall below a statistically determined threshold, indicating an arousal that often causes lightening of sleep. 

 Fig. 2. Example of transitions between sleep and wake, showing how the 
instantaneous indices (RSA, LF/HF and Var HR) computed at high 
resolution (5 ms) provide clear dynamic signatures associated to changes in 
sleep state during a time scale corresponding to a range of 900 s. 

TABLE I 
STATISTICS OF THE RSA AND HRV MEASURES 

 Healthy OSA 
 NREM2 REM NREM2 REM 
RSA 20.4±16.3 6.54±4.45 ** 24.8±24.5 10.3±7.2 ** 
LF/HF 0.54±0.55 1.87±2.19 ** 0.88±1.04 1.55±1.68 *  
LF 644±74 297±340 ** 1165±1639 657±915 *  
HF 857±794 186±151 ** 1849±2324 401±463 ** 
LFnu 0.31±0.20 0.54±0.28 ** 0.35±0.26 0.48±0.28 *  
HFnu 0.69±0.20 0.46±0.28 ** 0.65±0.26 0.52±0.28 *  
varHR 3.39±1.72 2.89±1.42 *  2.49±1.64 2.48±1.84   
Summary of the distributions of the RSA and HRV measures during 30s 

epochs of NREM2 and REM sleep for the two groups of subjects. For each 
measure, median±1.4826×MAD (1.4826 times the Median Absolute 
Deviation is a robust estimator of standard deviation) are reported. A 
Mann-Whitney test was used to assess whether the values of RSA, HF, 
HFnu, and varHR are higher during NREM2 w.r.t. REM and whether 
LF/HF, LF, and LFnu are lower. The cases marked with * are significant at 
p<0.05 while those marked with ** are significant at p<10-10. 
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threshold for a minimum duration of 8s, and they are 
indicated by the red asterisks in the two recordings in Fig. 1. 
The algorithm is able to detect all the events triggering a 
sleep score transition, as well as additional shorter events 
due to its higher time resolution, for a total of 24 CR 
arousals for the healthy subject and 42 for the subject with 
apnea. We hypothesize (at least for the healthy individual) 
that CR arousals have occurred when RSA has minima. To 
test this hypothesis, we averaged all the detected transitions 
from the threshold-based procedure and used the detection 
as fiducial point to average all indices (as well as the raw RR 
series) along a 100s time scale, with the fiducial point in the 
center of the considered interval. One example of arousal, as 
well as averaged time series of all the arousals detected for 
the healthy subject in Fig 1, are presented in Fig. 4. The 
averaged series confirm previous arousal characterization 
[11] for the mean RR, LF/HF and the HF indices, validating 
our detection criterion and pointing at a novel 
characterization of the arousal event by our instantaneous 
index of RSA. 

IV. DISCUSSION AND CONCLUSION 
In this paper we have presented a novel, automatic point-

process algorithm for the instantaneous assessment of heart 
rate variability (HRV) and respiratory sinus arrhythmia 
(RSA) and shown preliminary results obtained from one-
night-long polysomnographic recordings. Our approach is 
able to identify fast dynamics that allow for sleep 
characterization at higher time resolution than traditional 
methods and to track fast changes in RSA that indicate brief 
CR arousals and transitions from deep to light sleep or wake. 

In the future, we plan to further exploit the capability of 
this algorithm to track fast autonomic changes in order to 
accurately characterize different types of both ECG- and 
EEG-based arousal events and/or apnea episodes. A 
particular focus will be given to investigate if our 
identification can predict these transient phenomena. A 
potential accurate classification, together with the ability to 

track autonomic changes and transitions between stages in 
an on-line fashion, may provide a solid base for building 
real-time sleep monitoring and bio-feedback devices. 
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Fig. 4. Dynamic signatures of the detected CR arousals. Time =0 is where 
the RSA first crosses the threshold. Left: an example of the arousals found 
for one healthy subject. Right, for each signal we report median (dark line) 
and 25th and 75th percentile (grey lines) of the distribution at each time. 

Fig. 3. Example of a transition from NREM2 to REM. 

7738


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

